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ABSTRACT 
 

Fire poses a great threat to steel structures. Since fire experiments are expensive and furnaces are usually 
limited both in number and in size, finite element (FE) analysis programs are utilized to conduct both heat 
transfer and structural analyses. In order to accurately model structural fire problems, it is essential to 
estimate the material temperatures correctly. In this study, a novel FE program in MATLAB, a widely 
available commercial numerical software, is developed. FE code solves the parabolic partial differential 
equation of transient heat transfer in two dimensions with nonlinear convective and radiative boundary 
conditions. The program uses backward, forward or central difference for progression in time and full 
Newton-Raphson method for convergence between increments. The program is specially designed for 
cross sections of the wide flange beams. The original contribution of FEHEAT program is the inclusion of 
view (configuration) factors to the nonlinear solution algorithm. FEHEAT program is vigorously validated 
with established FE software Abaqus. Several case studies are conducted for various types of steel wide-
flange cross sections. The results show that the inclusion of radiation heat exchange between bottom flange 
and top flange via the view factors significantly increases the temperature in the regions away from the fire 
boundary. The surface heat exchange by radiation causes as much as 50% decrease in the thermal gradient 
for various cross sections, which is a crucial advantage especially for one-side heated perimeter columns. 

 
NOMENCLATURE 
 
M  = Mass matrix 
T  = Temperature field vector 
K = Global conduction/stiffness matrix 
Ke = Element conduction/stiffness matrix 
Tሶ   = Temperature derivative field vector 
	T	෢= Temperature field predictor 
T୭ = Initial temperature field 
N = Shape function vector for the four nodes of 
each element 
F = Heat flux vector 
R	= Unbalanced heat vector 
J = Jacobian matrix 
J୰= Nonlinear contribution (radiation) of the heat 
flux vector  
v୭= Temperature velocity vector 
α ൌ Trapezoid rule coefficient 
F୧୨= View factor between element i and j 
nሬԦ = Surface normal vector 
sԦ୧୨ = Distance vector between element i and j 
dA୧,୨	= Differential area element 
sԦ୧୨= Distance vector 
dFp,i = Viewfactor coefficient from one point on a 
differential strip 
Ty = Thermal gradient 

 
1. INTRODUCTION 
 
The correct estimation of the temperatures in 
structural member cross sections is crucial to 
calculate fire induced forces and moments and 
ultimately to evaluate the fire performance of the 
structural system. With increasing computational 
power, and mathematical know-how, the finite 
element (FE) analysis software are utilized to 
conduct both heat transfer and structural analyses 
since fire experiments are expensive and furnaces 
are usually limited both in number and in size. 
 
In this study, a finite element code FEHEAT with a 
Graphical User Interface (GUI) is developed using 
MATLAB. GUI is specifically designed for 
structural fire engineers and it is limited to wide-
flange beam sections with or without fire protection. 
In wide-flange sections, the top and bottom flanges 
as well as the web constitute an enclosure and hence 
in addition to convective and radiative heat transfer 
on the fire boundary, the surfaces in the enclosure 
exchange heat by radiation. Such problem requires 
the calculation of geometric surface-to-surface 
radiation view factors. The view factors for three-
dimensional body of any geometry can be 
calculated by either area or line integration 
algorithms [1]. The calculation of such integrals is 



tedious and numerical integration techniques are 
generally employed [2].  
 
Using this code, the objective is to run fast and 
reliable parametric studies with various wide-
flange beam sections and investigate the effect of 
section dimensions and surface heat exchange by 
radiation on the thermal gradient, which is an 
important parameter to calculate the fire 
performance of perimeter columns. Observations 
and numerical analyses suggest that the enclosure 
radiation does not affect the temperature field if the 
wide-flange sections are subjected to fire on three 
sides (i.e. all surfaces except the top surface) [3]. In 
the case of perimeter columns, the top surface of the 
flange is considered as the only fire boundary, 
which will create a large thermal gradient in the 

cross section. If the effect of the surface heat 
exchange by radiation is taken into account, the 
thermal gradient will be reduced [4].     
    
2. FEHEAT FINITE ELEMENT CODE 
 
FEHEAT solves the parabolic partial differential 
equation of nonlinear transient heat transfer in two 
dimensions with convective and radiative boundary 
conditions. The user can also specify a pre-
described temperature or direct heat flux on the fire 
boundary. The program uses backward, forward or 
central difference for progression in time and full 
Newton-Raphson method for convergence between 
increments. The full details of the step-by-step 
procedures are given in Table 1.  

 
Table 1: Flowchart of the FEHEAT algorithm for linear and non-linear heat transfer analysis 

 

 
 
The semi-discrete parabolic heat equation is written 
with an initial condition (temperature) as in Eq. 2.1 
and 2.2. The heat equation is semi-discrete because 
the finite element method is used to solve the 

problem for the entire domain at a specific time, 
whereas stepping to the next time step is achieved 
by using the finite difference method. The most 
commonly used time stepping algorithm for solving 



the parabolic heat equation is the generalized 
trapezoidal family of methods (see Table 2). 
 
ሾMሿ	൛Tሶ ൟ ൅ ሾKሿ	ሼTሽ ൌ ሼFሽ																																														ሺ2.1ሻ 
 

ሼTሺ0ሻሽ ൌ ሼT୭ሽ																																																																	ሺ2.2ሻ 
 
The time stepping algorithm starts with the initial 
temperature field ሼ࢕ࢀሽ. As shown in Eq. 2.3, the 
solution propagates in time using the predictor-
corrector method using the coefficient ߙ  (scalar). 
The members of the generalized trapezoidal family 
are identified in Table 2. 
 
ሼv୬ାଵሽ ൅ ሾKሿ	ሼT୬ାଵሽ ൌ ሼF୬ାଵሽ 
 

ሼT୬ାଵሽ ൌ ሼT୬ሽ ൅ Δt	ሼv୬ା஑ሽ		                                (2.3) 
 

ሼv୬ା஑ሽ ൌ ሺ1 െ αሻሼv୬ሽ ൅ α	ሼv୬ାଵሽ 
 

Table 2: Trapezoidal families for the semi-
discrete time stepping algorithm 

 
α  name 

0  Forward Euler 

½  Crank‐Nicolson 

1  Backward Euler 
 
Once the initial temperature field ሼ࢕ࢀሽ is known, 
the initial temperature velocity vector ሼ࢜࢕ሽ  is 
evaluated at ݐ	 ൌ 	0  as in Eq. 2.4. Next, the 
predictor value ሼࢀ෩࢔ା૚ሽ is found using Eq. 2.5 There 
are two implementations to predict the next step: v-
form and d-form. The v-form implementation uses 
the velocity in order to predict the temperature and 
d-form calculates the temperature field in order to 
get the velocity field. 
 
Both implementations have identical results, but d-
form is computationally advantageous when the 
mass matrix ሾMሿ is diagonal. 
 
ሾMሿሼv଴ሽ ൌ ሼF଴ሽ െ ሾKሿሼT଴ሽ																																										ሺ2.4ሻ 
 

൛T෡୬ାଵൟ ൌ ሼT୬ሽ ൅ ሺ1 െ αሻ	Δt	ሼv୬ሽ																														ሺ2.5ሻ 
 
v-form: 
The velocity vector of the next step {࢜࢔ା૚ } is 
calculated by inverting the coefficient matrix as in 
Eq. 2.6. Finally, the recursion relation is ended by 
estimating the temperature field ሼ࢔ࢀା૚ሽ of the next 
step (Eq. 2.7) and the iteration is continued to 
further steps. 

ሺ	ሾMሿ ൅ α	Δt	ሾKሿ	ሻ		ሼv୬ାଵሽ ൌ 	 ሼF୬ାଵሽ	ሾKሿ	൛T෡୬ାଵൟ         

(2.6)    

ሼT୬ାଵሽ ൌ 	 ሼT୬ሽ ൅ α	Δt	ሼv୬ାଵሽ																																					ሺ2.7ሻ	

d-form: 
For this implementation, the temperature vector of 
the next step {݀௡ାଵ} is first calculated by inverting 
the coefficient matrix as in Eq. 2.8. Finally, the 
recursion relation is ended by estimating the 
velocity field {࢜࢔ା૚} of the next step (Eq. 2.9) and 
the iteration is continued to further steps. 
 
1
αΔt

ሺ	ሾMሿ ൅ αΔtሾKሿ	ሻ	ሼT୬ାଵሽ ൌ ሼF୬ାଵሽ ൅	
1
αΔt

	ሾMሿሼ	ሼT෡୬ାଵሽ 

                                                                         (2.8) 

ሼv୬ାଵሽ ൌ
ሼ୘౤ሽିሼ୘෡౤శభሽ

஑୼୲
                                           (2.9) 

2.1    NONLINEAR SOLUTION ALGORITHM  
 
The heat transfer problem is non-linear due to the 
radiation boundary conditions at the fire surface 
and surface heat exchange by radiation in the 
enclosure. For the nonlinear problem, a full 
Newton-Raphson (NR) iteration scheme is used. N-
R requires to assemble the tangent stiffness matrix 
at each iteration i of each time increment n. The 
tangent stiffness matrix is also called the Jacobian 
matrix ሾ	ܬ	ሿ in the structural engineering practice. 
Here, only a brief explanation of NR methodology 
is provided and a more detailed explanation can be 
found by [5]. 
 
First, the unbalanced heat vector ሼ	ܴ	ሽ  is formed 
from Eq. 2.8 (d-form) as defined in Eq. 2.10 (see 
Table 1). ሼܴሽ  is estimated using the temperature 
field from the previous step ሼ	ܶ	ሽ  and the 
temperature field predictor ሼ	ܶ	෢ሽ. The terms of the 
contribution to the Jacobian matrix Jij are the 
derivatives of the unbalanced heat load vector as 
shown in Eq. 2.11. 
  

ሼRሽ ൌ
1
αΔt

	ሺ	ሾMሿ ൅ αΔt	ሾKሿ	ሻሼTሽ െ	
1
αΔt

ሾMሿ൛T෡ൟ െ ሼFሽ 

(2.10) 
 

		J୧୨ ൌ
∂R୧
∂T୨

ൌ 4	න σϵTଷ
∂T
∂T୨

	

ୗସ
	N୧	dΓ																									ሺ2.11ሻ 

 



Equation 2.12 is the vectorized notation of 
Equation 2.11 and it defines the contribution of the 
nonlinear heat flux term [Jr] to the global 
conduction matrix of the solid body. Equation 2.13 
is the global Jacobian matrix [J]. 
 

ሾܬ௥ሿ ൌ 	4න ଷሼܰሽܶ߳ߪ
	

ௌସ
 ሺ2.12ሻ																																		Γ݀	ۂܰہ	

ሾJሿ ൌ ൬ሾKሿ ൅
1
αΔt

ሾMሿ൰ ൅ ሾJ୰ሿ																																		ሺ2.13ሻ 

 
Once the global Jacobian matrix is assembled, NR 
algorithm is performed as below at increment n 
until a specified tolerance value (TOL in Table 1) 
is reached: 
 
൛ΔT୬ାଵ

୧ାଵ ൟ ൌ ൣJ୬ାଵ
୧ ൧

ିଵ
	൛– R୬ାଵ

୧ 	ൟ														 
 

൛T୬ାଵ
୧ାଵ ൟ ൌ 	 ൛T୬ାଵ

୧ ൟ ൅	൛ΔT୬ାଵ
୧ାଵൟ																											ሺ2.14ሻ 

 
3. VIEW FACTOR CALCULATION 
 
In the absence of an absorbing medium, radiative 
heat exchange between surfaces depends on the 
optical view of each surface to the others as seen in 
Fig. 1. The view factor estimation for surfaces 
involves rigorous methods and the different 
methods can be classified by the way in which the 
integration is carried out. Several methods can be 
used such as contour integration, area integration, 
crossed-strings method, unit sphere method or 
Monte-Carlo method. Among these methods, the 
area integration method for finite elements is 
chosen for its efficient algorithm and easy 
implementation to the finite element code.    
 
The view factor equation is constructed by solving 
the general radiation exchange equation of arbitrary 
inclined finite surfaces. If the surfaces are diffuse 
and have a spatially constant emissive power, the 
fraction of radiant energy leaving surface i that is 
intercepted by surface j is: 
 

௜௝ܨ ൌ 	
ଵ

஺೔
∬

ୡ୭ୱఏ೔ ୡ୭ୱఏೕ
గௌమ

    ሺ3.1ሻ																												௜ܣ௝݀ܣ݀

 

 
 

Fig. 1. The optical view of finite surface dAi and surface 
dAj. 

 
3.1 FROM 3D TO 2D 
 
Eq. 3.1 calculates the view factor coefficients for 
surface areas in three-dimensions. However, for a 
two-dimensional heat transfer analysis, the finite 
surfaces become finite strips (lines). Eq. 3.1 is 
therefore modified for reduced space dimensions. 
In the next steps, an equation for the view factor 
coefficient of finite strips with infinitely long width 
is derived.  
 
As illustrated in Fig. 2, let ሬ࢙Ԧ࢐࢏ be the distance vector 
from a point on Surface ݀ܣ௜ to a point on Surface 
 :௝ as in Eq. 3.2ܣ
 
sԦ୧୨ ൌ െsԦ୨୧ ൌ 	 rԦ୨ െ rԦ୧ ൌ ൫x୨ െ x୧൯ıԦ൅ ൫y୨ െ y୧൯ȷԦ൅ ൫z୨ െ z୧൯kሬԦ	 

 
(3.2) 

 
The local surface normal (unit) vector for each 
finite surface area can be written as: 
 
ሬሬԦ࢔ ൌ cos ௫ߠ 	ଙԦ ൅ cos ௬ߠ 	ଚԦ൅ cos ௭ߠ 	࢑ሬሬԦ                      (3.3) 
 
where cos ௫, cosߠ ௬,  cosߠ  ௭ are direction cosinesߠ
for the unit vector ࢔ሬሬԦ.  
 
The angles between the surface normal and the 
distance vector ࡿሬሬԦ are shown in Eq. 3.4: 
 



cosθ୧ ൌ 	
nሬԦ୧	.		sԦ୧୨
S

ൌ
1
S
ൣ൫x୨ െ x୧൯ cos θ୶,୧ ൅ ൫y୨ െ y୧൯ cos θ୷,୧

൅ ൫z୨ െ z୧൯ cos θ୸,୧൧ 
 

cosθ୨ ൌ 	
nሬԦ୨		.		sԦ୨୧
S

ൌ
1
S
ൣ൫x୧ െ x୨൯ cos θ୶,୨ ൅ ൫y୧ െ y୨൯ cos θ୷,୨

൅ ൫z୧ െ z୨൯ cos θ୸,୨൧ 

where ܵ ൌ ටหݏԦ௝௜ห
ଶ
 is the distance length from the 

center of surface i to the center of surface j.  

                                                                        (3.4) 

 
 

Fig. 2. The calculation of the viewfactor coefficient of finite surfaces (in 3D) at arbitrarily angle α with infinite dimension in y-
axis. 

 
As seen in Fig. 2, zi = 0; xj = uj cos(α) and zj = uj 
sin(α) leads to  
 
ܵଶ ൌ ܵ௢

ଶ ൅ ሺݕଵ െ  ଶሻଶ                                       (3.5)ݕ
 
where So is the projection of S in the x-z-plane.  
 
The surface normal ࢔ଙሬሬሬԦ  and ࢔ଚሬሬሬሬԦ  are readily 
determined as shown in Eq. 3.6: 
 
ଙሬሬሬሬԦ࢔ ൌ ࢑ሬሬԦ 
ଚሬሬሬሬԦ࢔ ൌ ଙԦsin ߙ െ ࢑ሬሬԦ cos  (3.6)                                        ߙ
 
For this problem, Eq. 3.4 reduces to Eq. 3.7: 
 
cos ௜ߠ ൌ ௝ݑ sin ߙ /ܵ 
cos ௝ߠ ൌ ௜ݔ sin ߙ /ܵ                                                 (3.7) 

 
Fig. 3. The viewfactor calculation of the finite strips in 2D. 

The viewfactor coefficient from one point on a 
differential strip (dFp,i) to a finite strip (strip, j) is 
therefore:  
 

dF୮,୧ିୱ୲୰୧୮,୨ ൌ න
cos θ୧ cos θ୨

πSଶ
dA୨

ൌ
du୨
π
න

x୧	u୨ sinଶ α dy୨

ቂS୭ଶ ൅ ൫y୧ െ y୨൯
ଶ
ቃ
ଶ

ஶ

ିஶ
 

(3.8) 
 
If θ10 and θ20 are assumed to be the projections of θi 
and θj, the final equation is found. Eq. 3.9 gives the 
view factor coefficient of one point p in finite strip 
i to a finite strip ݀ݑ௝.  
 

௣,௜ି௦௧௥௜௣,௝ܨ݀ ൌ
ଵ

ଶ
cos ௜଴ߠ cos ௝଴ߠ

ௗ௨ೕ
ௌ೚

                        (3.9) 

 
4. IMPLEMENTATION OF VIEWFACTOR 

CALCULATION 

The viewfactor coefficient of each element in an 
enclosure of the wide-flange section is calculated at 
the beginning of FEHEAT code. Each finite 
element is divided to sub-elements (m sub-elements 
for element i and n sub-elements for element j). In 
order to calculate the viewfactor coefficient Fij of 
the finite element i to finite element j, the procedure 



illustrated in Fig. 4 is used. Eq. 3.9 is integrated by 
Riemann Summation of each sub-element. 
 

௜௝ܨ ൌ
ଵ

௠
∑ ∑ ଵ

ଶ
cos ௜௢,௠ߠ cos ௝௢,௡ߠ

ௗ௨೘ష೙

ௌ೚,೘ష೙
௡௠              (4.1) 

 

  
 

Fig. 4 The implementation in FEHEAT to find the viewfactor coefficients Fij for each finite element in an enclosure. 
 

 
 

Fig. 5. The viewfactor Fij validation for wide-flange section with Abaqus 
 
 
The results are validated by Abaqus, a 
commercially available finite element software [6]. 
The viewfactor coefficients of the wide-flange 
section enclosure in FEHEAT match very closely 
to the coefficients in Abaqus as seen in Fig. 5. Here, 
only 6 sub-elements are used and as the number of 
sub-elements increases, the results converge. 
 

 

5. PARAMETRIC STUDY AND RESULTS 

Once the viewfactor algorithm is validated, a 
parametric study is conducted to see the effect of 
geometric dimensions of the wide-flange steel 
sections on the surface heat exchange by radiation. 
Since the viewfactor coefficient is a geometric 
property, the geometric properties of the wide-
flange beams (d, bf, tf, tw) might have a significant 
effect on the heat flux between the heated region 
and the cooler region.  



In order to conduct a parametric study with realistic 
dimensions, the steel profiles from the American 
Institute of Steel Construction (AISC) are used [7]. 
Table 3 summarizes the statistics of the 
characteristic dimensions of over 270 wide-flange 
sections.  
 
Over 30 wide-flange sections are selected. The 
range of the depth d varied from 100mm to 
1000mm and the range of the flange width bf is 
from 100mm to 600mm. The flange and web 
thickness (tf and tw) are kept constant to isolate the 
effect of the depth and flange width, which 
essentially constitute the enclosure dimensions.  
 
Columns are the most critical structural members 
for the global stability of the buildings. During fire, 
the perimeter columns are likely to be subjected to 
fire on one-side if the walls are good insulators such 
as brick or gypsum board. Even if the columns are 

fire-protected, the one-sided heating will create 
large thermal gradient in addition to compression 
with thermal expansion. The thermal gradient will 
create additional moment due to the shift of the 
stiffness centroid of the wide-flange section [8, 9]. 
Hence, the effect of the thermal gradient Ty is 
investigated with the consideration of the surface 
heat exchange by radiation.  
 
The perimeter columns heated only on one side are 
taken as a case study as illustrated in Fig. 6. The 
unexposed (to fire) boundaries exchange heat by 
radiation when the surface-to-surface radiation (via 
view factors) is enabled. Otherwise, the unexposed 
boundaries are adiabatic. The columns are 
subjected to ISO-834 fire curve for 90 minutes. In 
order to observe the worst-case scenario, no fire 
protection is applied to the columns.  
 

 
Table 3. Mean, maximum and minimum values of wide-flange section dimensions in AISC.  All 

dimensions are in mm. 
 

section dimensions max min mean section dimension ratios max min mean

d 1120 106 573 d / bf 3.39 0.95 2.01 

bf 455 100 288 d / tf 52.80 4.55 22.21 

tf 125 5 32 d / tw 62.94 7.29 35.55 

tw 78 4 19 bf / tf 23.03 3.64 11.19 

    bf / tw 32.86 5.83 17.94 

    tf / tw 1.90 1.10 1.64 

 
The heat transfer analysis is conducted for each 
wide-flange section with and without the surface 
heat exchange by radiation. The thermal gradient Ty 
is simply calculated by subtracting the bottom 
flange average temperature from the top flange 
average temperature and dividing the result by the 
depth of the section for the duration of the fire.  
 
Fig. 7 shows the time when the maximum thermal 
gradient occurs. As expected, the thermal gradient 
is generally largest at the end of the fire curve (90 
min) without the surface heat exchange. However, 
the time for maximum thermal gradient is scattered 
from 40 to 90 min if the surface heat exchange is 
allowed.    
 

The results are shown in Fig. 8. Each point on the 
surfaces represents Ty,max for each parametric study. 
The surfaces are created by cubic interpolation of 
these points. The Ty,max is a function of the depth (d) 
and the flange width (bf). The top surface represents 
Ty,max without the consideration of surface heat 
exchange and the bottom surface represents Ty,max 
with the consideration of surface heat exchange.  
 
Fig. 8 suggests that the heat exchange between the 
bottom flange, top flange and the web in enclosure 
reduces the thermal gradient significantly for the 
entire range of the wide-flange sections. The 
percent decrease of Ty,max could be as much as 50%. 
The Ty,max rapidly increases for d/bf < 1.0. When the 
depth is large, increasing the flange width does not 
affect the Ty,max. Overall, the Ty,max seems to be 



correlated more with the depth of the section than 
the flange width.  

 
 

Fig. 6 The effect of surface heat exchange by radiation in 
one-side heated perimeter columns.  

 
Fig. 7. The time when the maximum thermal gradient Ty,max 
is reached with and without the surface heat exchange by 

radiation in the enclosure. 
 
 
 
 
 
 

 
 

Fig. 8. The maximum thermal gradient Ty,max surface as a function of the depth (d) and the flange width (bf) with and without 
the surface heat exchange by radiation in the enclosure. 

 
 
6. CONCLUSIONS 
 
This paper presents an on-going research on the 
development of a novel finite element code 
FEHEAT, which is specificially designed for 
structural fire engineers. FEHEAT solves the 
parabolic partial differential equation of nonlinear 

transient heat transfer in two dimensions with 
convective and radiative fire boundary conditions. 
FEHEAT has also the capability to calculate the 
viewfactor coefficients (in 2D) in a wide-flange 
section enclosure to take account of the surface heat 
exchange by radiation. The effect of the heat 
exchange is confirmed via the perimeter columns 



heated on one-side with a standard fire curve. The 
analyses show that the most significant effect of the 
surface heat exchange is on the thermal gradient in 
the columns. Depending on the geometric 
dimensions of the enclosure (d and bf), the 
reduction in the maximum thermal gradient in the 
cross section could be as much as 50%. Such 
reduction confirms that the additional moment on 
the column induced by the thermal gradient is 
significantly reduced. Therefore, the estimation of 
the moments due to section thermal gradient with 
adiabatic surfaces in the enclosure is a very 
conservative approach.   
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