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Abstract:  
 
Local buckling in floor beams has been one of the important observations in several 
fire events in steel buildings such as World Trade Center Tower 7 and large-scale fire 
experiments such as Cardington in UK. Utilizing three dimensional finite element 
methods for complex geometry and nonlinear behavior of such connections, local 
buckling of the web followed by the buckling of the lower flange is observed to occur 
in early stages in fire, which causes instability to the floor system, and a reduction in 
the connection strength. To fully capture the behavior of floor systems, one needs to 
be able to predict such buckling behavior of the beam. This paper contributes to such 
knowledge by investigating the local buckling of floor beams at elevated temperatures 
using nonlinear finite element models. The results are compared to AISC provisions 
of plate buckling under ambient and elevated temperatures.  
 
I - Introduction  
 
Recent experimental and finite element (FE) observations [Moore 2003; Garlock and 
Selamet 2010] show that local buckling of a floor beam in the vicinity of the 
connection greatly reduces the axial capacity of the beam during both the heating and 
the cooling period in a natural fire. During the heating phase, the beam is under 
compression and the axial forces increase until the lower flange buckles at which 
point the compressive forces decrease. The deformations caused by the buckling near 
the connection reduce the tensile capacity of the connection [Selamet and Garlock 
2010]. Therefore local buckling controls the maximum compressive and tensile force 
that a beam experiences in a fire.  
 
The aim of this paper is to investigate the strength of wide flange beams considering 
local buckling under fire conditions. Previous research on local buckling of steel 
members focused on isolated plate buckling studies without consideration of the 
flange (an “unstiffened plate”) and the web (a “stiffened plate”) interacting with each 
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other [Karman 1937; Kalyanaraman 1977; Quiel and Garlock 2010]. In this paper we 
examine the ultimate buckling strength of the flange and webs of I-shapes as they 
interact with one another. We do this through nonlinear finite element modeling.    
 
II - Description of the finite element model 
 
Our finite element models are created in ABAQUS, a widely used commercial finite 
element software, using linear, finite membrane strain, fully integrated, quadrilateral 
shell elements (S4) with 9 integration points (2x2x9) through the thickness. 
Simpson’s integration rule is adopted to extrapolate the stress and strain values at 
integration points to the nodes on the shell surface. Since a wide range of width-to-
thickness ratios are tested under uniform compression, it is necessary to take account 
both thin and thick shell formulation. Thick shells consider transverse shear 
deformation and do not assume the Kirchhoff constraint, which states that the plate 
section through the shell thickness remains normal to the longitudinal axis. As a rule 
of thumb, a slenderness ratio (b/t) larger than 1/15 could develop significant 
transverse shear deformation [Simulia, 2008]. The Steel Construction Manual [AISC, 
2005] offers a wide variety of wide flange sections, some of which have a slenderness 
ratio larger than 1/15. We are aware that a plate section with a low slenderness ratio 
will likely yield before it will buckle; nevertheless, due to a significant decrease in 
rigidity (elastic modulus) of the shell cross section at elevated temperatures, a 
formulation with thick shell consideration is selected to capture an accurate behavior 
of such plates. 
 

Table 1: Material properties at ambient and elevated temperatures for S275 Grade 
Steel according to Eurocode 

Temperature kp(T) ky(T) ke (T) Fy (T) 
in MPa 

Fu (T) 
in MPa 

E (T) 
in GPa 

20 1 1 1 303.0 469.6 207.0 
100 1 1 1 303.0 469.6 207.0 
200 0.807 1 0.900 303.0 469.6 186.3 
300 0.613 1 0.800 303.0 378.7 165.6 
400 0.420 1 0.700 303.0 303.0 144.9 
500 0.360 0.780 0.600 236.3 236.3 124.2 
600 0.180 0.470 0.310 142.4 142.4 64.2 
700 0.075 0.230 0.130 69.7 69.7 26.9 
800 0.050 0.110 0.090 33.3 33.3 18.6 
900 0.038 0.060 0.068 18.2 18.2 13.9 

 
The material properties of I-shaped cross sections are taken from previously studied 
research [Garlock and Selamet 2010] as shown in Table 1. The parameters kp, ky and 
ke represent the proportional stress, yield stress and elastic modulus reduction factors, 
respectively [ECCS 2001]. The yield and ultimate stress of the material is denoted as 
Fy(T) and Fu(T), respectively. E(T) is the modulus of elasticity at the given 
temperature (equal to E at ambient temperature times ke) The steel material is 
modeled with ‘von Mises’ plastic flow and isotropic strain hardening. No material 
softening is included as this would greatly decrease the convergence character of the 
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problem. The steel material behavior at elevated temperatures is adopted from 
Eurocode 3 provisions [Eurocode 2001].   
 
Some of the simulations that we have done represent the isolated plates for different 
boundary conditions (as described in the Section III) and some represent flanges and 
webs in an I-shaped assembly (as described in the Section V). For all models, the 
loaded edges are simply supported. The boundaries of unloaded edges of isolated 
plates are simply supported or fixed (from rotation and vertical translation) or free in 
all degrees of freedom. 
 
III - Mesh convergence and critical buckling study of isolated plates 
 
To properly represent buckling using the finite element method one must represent a 
continuous plate section using smaller quadrilateral elements. A coarse meshing of 
the section will yield unconservative results in the buckling strength of the plate. 
Having a very fine mesh will be computationally inefficient and it might create 
numerical convergence issues near the bifurcation load. Eurocode 3 suggests meshing 
at least 6 shell elements in the expected half wavelength of the buckling shape [JRC, 
ECCS 2007]. The most effective way to check mesh convergence is to run several 
eigenvalue extraction analyses with different mesh densities. Comparing the first 
couple of eigenvalues to the theoretical eigenvalues will indicate if the finite element 
mesh is fine enough. The eigenvalue extraction analyses are very fast as opposed to 
the costly load displacement (static or dynamic) analyses.  
 
The lowest eigenshapes (buckling shape) of the stiffened isolated plates with simply 
supported (Case 1) and fixed (Case 2) unloaded edges are shown in Table 2. It is seen 
that Case 1 has 5 half waves (i.e. n=5) and Case 2 has 8 half waves. Similarly, the 
buckling shapes of the unstiffened isolated plates with simply supported (Case 3) and 
fixed (Case 4) unloaded edges are illustrated in Table 2 with 1 and 3 half waves, 
respectively. The mesh density of isolated plates is also used for plates in I-shaped 
cross sections. The critical buckling stress, Fcr, is theoretically equal to: 
 

                                                             Eq. (1) 

     
                        Eq. (2) 
 
where v is the poisson’s ratio, b is the plate width, t is the plate thickness and k is the 
buckling coefficient which represents the boundary condition. The buckling 
coefficient k is found by using Equation 2 derived by Bleich [1952]. His equations 
represent not only simply supported or fixed boundary conditions but various 
restraints in between, which are denoted by the parameters p and q. The aspect ratio 
and the number of half waves across the plate length are denoted by α and n, 
respectively.  
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The values from Equation 2 for all four cases are shown in Table 2. It is important to 
note that the Steel Construction Manual [AISC, 2005] suggests that the buckling 
coefficient k is 4.0 and 0.425 for Case 1 and Case 3, respectively. The buckling 
coefficient 4.0 is an accurate estimate for Case 1 with the aspect ratio α equal to 5 
according to the elastic plate buckling theory. However, the value 0.425 is 
conservative for Case 3 with α=5. A rigorous analysis on the general plate buckling 
coefficient formulation [Bleich, 1952] reveals that α ≥ 50 is needed to converge to k = 
0.425. To keep the mesh convergence study accurate, the theoretical buckling 
coefficient k is taken as 0.465 using the Equation 2 with α = 5. 
 

Table 2: Buckling coefficient for web (stiffened) and flange (unstiffened) isolated 
plates for both simply supported and fixed boundary conditions on unloaded edges. 

  
Boundary Conditions Parameters 

ST
IF

FE
N

E
D

 (W
E

B
) 

C
as

e 
1 k = 4.0 

 
α=5; n=5 
p=2; q=1 

C
as

e 
2 k = 7.01 

 
α=5;n=8 

p=2.5;q=5 

U
N

ST
IF

FE
N

E
D

 (F
L

A
N

G
E

) 

C
as

e 
3 k = 0.465 

 
α=5;n=1 

p=0.425;q=0 

C
as

e 
4 k=1.277 

 
α=5;n=3 

p=0.57;q=0.125 
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Table 3: Results for the 1st eigenvalue value analyses of isolated webs and flanges for 
various b/t ratios. 

 

Fcr (MPa)
WEB FLANGE 

Case 1 
 

(5 half waves) 
Case 2 

 

(7 or 8 half waves) 
Case 3 

 

(1 half wave) 
Case 4 

 

(3 half waves) 

b/t FE theory FE theory FE theory FE theory 

10 7175   7483 11482 13114 844.4 869.9 2288 2389 
16 2899 2923 4938 5123 334.1 339.8 917.0 933.2 
20 1870 1870 3238 3279 214.8 217.5 591.0 597.3 
25 1203 1197 2105 2098 137.9 139.2 380.1 382.3 
33 679.4 687.2 1199 1204 77.8 79.9 214.7 219.4 
40 472.6 467.7 837.4 819.7 54.1 54.4 149.4 149.3 
50 302.8 299.3 538.1 524.6 34.7 34.8 95.8 95.6 
57 232.0 230.3 412.8 403.6 26.5 26.8 73.4 73.5 
65 179.7 177.1 320.0 310.4 20.6 20.6 56.8 56.5 
77 128.1 126.2 228.4 221.2 14.7 14.7 40.5 40.3 
87 100.3 98.9 178.8 173.3 11.5 11.5 31.7 31.6 

100 75.8 74.8 135.3 131.1 8.7 8.6 24.0 23.9 
 
Table 3 shows values of Fcr for the boundary conditions shown in Table 1 and various 
slenderness ratios b/t. The tested plate has the following properties: E=207 GPa, 
ν=0.3 and b/t=87. Both the theoretical (theory) values (based on Equations 1 and 2) 
and the finite element (FE) results (based on an eigenvalue analysis) are shown. It is 
important to mention that the buckling shape corresponding to the lowest (1st) 
eigenvalue is different for each case, which is denoted as the number of half waves 
across the plate length. FE results essentially equal the theoretical solutions. For the 
plate simply supported or fixed along the unloaded edges (Cases 1 and 2: web), the 
b/10 element size converges to the theoretical value within 4%. For the plate simply 
supported or fixed on one unloaded edge and free on the other edge (Cases 3 and 4: 
flange), the b/10 mesh element size approaches to the theoretical value also within 
3%.  
 
The largest percent difference from theoretical buckling strength is for the slenderness 
ratio b/t=10 as expected because b/t=10 belongs to a thick shell category and 
theoretical values assume a thin shell formulation. The mesh size equal to b/10 is used 
for plates in static load displacement analyses since it gives an accurate prediction of 
the elastic buckling theory.  
 
IV - Imperfection study 
 
The effect of the imperfection magnitude of the first (lowest) buckling shape on the 
buckling strength of the plates representing the isolated web and flange sections has 
been studied previously [e.g., Quiel and Garlock 2010]. In that study, two 
imperfection magnitudes were tested where the peak of the sinusoidal wave 
imperfection equals to b/200 or to 10% of the plate thickness (0.1t). A parametric 
study with several slenderness (b/t) ratios was conducted by changing the shell 
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thickness and keeping the plate width and length (b and a) constant. This method 
avoids re-meshing the plate for each different b/t. Since the plate width b stays 
constant, the first imperfection method (b/200) applies the same imperfection 
magnitude from compact to very slender elements. The second method (0.1t), 
however, changes the imperfection magnitude for each different b/t ratio. The 
difficulty is that for very slender plate sections tested in the parametric study, b/200 
could lead to almost 50% of the plate thickness which is a large initial imperfection.  
 
In this study we use initial imperfections corresponding to the lowest eigenvalues (see 
Table 2) and apply them to the load-displacement analyses by scaling the buckling 
shapes such that the maximum deflection in the models is 0.1% of the plate thickness. 
Figure 1 compares the buckling strength of slender and not-slender web and flange 
sections as a function of the initial imperfection magnitude. It is seen that slender web 
sections are not imperfection sensitive whereas not so slender (closer to compact) web 
sections are rather imperfection sensitive and their buckling strength could drop as 
much as 30% if the imperfection magnitude equals the plate thickness. Both slender 
and not-slender flange sections, which already have a much smaller buckling strength, 
are not sensitive to imperfections.  

 
Figure 1: The buckling strength Fcr/Fy of both isolated web and flange sections at 

ambient temperature with maximum imperfection magnitude on the log-scale x axis  
 

Geometric imperfections and residual stresses must be taken account in buckling 
design criteria. Intensive theoretical and empirical research has been completed since 
1950’s on both imperfections and residual stresses [Galambos 1988; AISC 2005]. 
Since the magnitude and the shape of the imperfections in a structure cannot be 
known apriori, we conducted finite element buckling studies with a very small 
imperfection magnitude (0.1%*t) and no residual stresses. The purpose is to see the 
ideal behavior of plates without significant effects of imperfection. The AISC design 
curve, which includes the effects of both imperfection and residual stresses, is 
expected to be conservative compared to our finite element results. 
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V- Ultimate buckling capacity of isolated plates and I-shaped sections 
 
Until now our studies have focused on the critical buckling capacity (Fcr) of isolated 
plates based on eigenvalue analyses or elastic theory (Equation 1). Now we examine 
the ultimate (i.e., post-buckling) capacity (Fcr,u) of plates in I-shaped sections as 
shown in Figure 2 and compare them to Fcr,u of isolated plates.  Fcr,u is found by 
dividing the total nodal forces applied to the isolated plate or I-shaped section and 
dividing it by the area where the forces are applied. Fcr,u corresponds to the average 
stress in the section when the field equations of the models stop converging.  
 
Cases 5, 6, and 7, shown in Figure 2 have different loadings on an I-beam, which 
come close to representing how that beam is loaded depending on the connections.  
For example, in Case 5, only the web section is uniformly loaded and it represents the 
loading scenario for simple shear connections in a fire. In Case 6, only the flange 
sections are uniformly loaded and it may represent a connection such as a top-and-
seat angle where the web is not connected.  Also, our previous studies (Garlock and 
Selamet 2010, Selamet and Garlock 2010) show that once the beam rotates 
sufficiently early in a fire, the bottom flange contacts the supporting member and 
subsequently the bottom flange is loaded in compression until it buckles. Therefore, 
Case 6 also represents simple shear connections.  In Case 7, the entire section is 
uniformly loaded. This case represents some common moment connections where 
both the flanges and web are connected.   
 

 
         (a) Case 5                            (b) Case 6                                (c) Case 7 
 

Figure 2: The buckling shape of the lowest eigenvalue for I-shape cross section 
composed of b/t=50 flange and b/t=100 web under uniformly loaded (a) web only 

(Case 5), (b) flanges only (Case 6) and (c) entire cross section (Case 7). 
 
 
Furthermore, this study permits a comparison of the isolated plate study, where Cases 
1 and 2 (stiffened plate) can be compared to Cases 5 and 7, and similarly, Cases 3 and 
4 (unstiffened plates) can be compared to Cases 6 and 7.  The isolated buckling study 
assumes either a simply supported (Case 1 or 3) or fixed (Case 2 or 4) boundary 
condition. In reality, the flange or web is neither fully restrained nor it is fully free to 
rotate at the edge where it connects to another plate (web or flange). The rotational 
restraint depends on the stiffness of the connecting plates. Several approximate 
analytical solutions have been derived [Bleich, 1952]; however these equations are 
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tedious to solve and have significant assumptions. The finite element method provides 
an alternative way to estimate the buckling strength of plates in an assembly.  
 
To estimate Fcr,u, the same method is used for both plates in an assembly and isolated 
plates. First, the theoretical buckling capacity Fcr and the buckling shape are 
estimated from the models by using the eigenvalue extraction method.  An initial 
imperfection is introduced in the model (as explained in Section IV), then a static 
load-displacement analysis is run to determine Fcr,u. For buckling studies using this 
method, the load increment must be small to capture the same buckling shape that is 
introduced by the initial imperfection. At the bifurcation load, a large load increment 
could introduce a different buckling shape (with a higher eigenvalue; e.g. higher 
buckling strength) that does not represent the initial imperfection, which defeats the 
purpose of such initial imperfection. Hence, the user must check if every analysis is 
failed by the introduced buckling shape.     
 
Figure 3 compares the buckling stress Fcr,u of web plates in an assembly (Cases 5 and 
7a) to that predicted by isolated stiffened plates (Cases 1 and 2). Case 7a (loading 
Case 7 in Fig 2) keeps the flange b/t value constant (either slender or stiff as defined 
below) but varies the web b/t.  Fcr,u is normalized to the yield stress (Fy) in the plots. 
For some values, Fcr,u /Fy values are greater than 1 since strain hardening is used in 
material properties (see Table 1). The response at various temperatures is examined: 
100°C, 400°C, 600°C and 900°C. The web in beam sections (Case 5) is either 
connected to very slender flanges (b/t=50) or to stiff flanges (b/t=5). This variation 
allows one to observe differences in Fcr,u of the web with a small or large rotational 
restraint at the boundaries.  
 
Figure 3 shows that at ambient temperature (Figure 5a) there are differences between 
the isolated plate behavior and the plate assembly behavior, where the web in the 
assembly (Case 5) is stronger than the isolated plate response.  The reason for this is 
that the flanges provide axial restraint, which stiffens the boundary conditions.  It is 
also seen that the flange slenderness (stiff versus slender) has a significant effect on 
the buckling strength. Further, the results for isolated web plate with simply supported 
edges (Case 1) closely match those of Case 5 with slender flanges for temperatures T 
≥ 400 °C. The same is true for web plates with fixed edges compared to Case 5 with 
stiff flanges for temperatures T ≥ 400 °C. When the entire section is loaded, Case 7a 
with stiff flanges closely follows Case 2 (isolated web with fixed boundaries) for all 
temperatures. This is expected since stiff flanges provide an almost full rotational 
rigidity.  However Case 7a with slender flanges has almost no strength at all since the 
flanges buckle right away destabilizing the entire cross-section. 
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 (a)                                                               (b)  

 

 
   (c)                                                              (d) 

Figure 3: Normalized Fcr, u for isolated and I-beam web sections with several 
boundary conditions are compared to AISC design curve for stiffened plates at 
temperatures (a) T  ≤ 100°C, (b) T = 400°C, (c) T = 600°C and (d) T = 900°C. 

 
For webs in I-shaped sections, there is not only rotational restraint but, as mentioned 
before, also translational (axial) restraint provided by the adjacent flanges since only 
the web section is loaded as opposed to the entire I-shape cross section. This type of 
loading causes contraction in the web section which is resisted by the connecting 
flanges and ultimately results in greater buckling strength of the web section.  If the 
flanges in these web-loaded analyses are slender, the axial force that is transferred to 
them causes them to buckle before the web.  This happens with webs that are stiff (b/t 
≤ 25), and what results is a significant drop in Fcr,u as seen in Figure 3.  
 
Figure 3 also plots the AISC design curve for stiffened plates based on the Steel 
Construction Manual [AISC, 2005] using Eqn E7-17 (where be/b = Fcr/Fy, see Quiel 
and Garlock 2010). The AISC solution is independent of the flange slenderness so 
that the AISC comparison can be made for all cases (Case 1, 2, and both Case 5 with 
slender and stiff flanges). At temperatures T ≤ 100 °C, AISC design curve is 
conservative. However, as the temperature increases, AISC becomes unconservative 
for Case 1 and Case 5 with slender flanges. AISC design curve is generally closer to 
the solution of isolated web with fixed edges (Case 2) and Case 5 with stiff flanges.   
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 (a)                                                               (b)  

 

 
   (c)                                                               (d) 

Figure 4: Normalized Fcr,u for isolated and I-beam flange sections with several 
boundary conditions are compared to AISC design curve for unstiffened plates at 

temperatures (a) T  ≤ 100°C, (b) T = 400°C, (c) T = 600°C and (d) T = 900°C. 
 
Figure 4 compares Fcr,u/Fy of flange plates in an assembly (Cases 6 and 7b) to that 
predicted by isolated unstiffened plates (Cases 3 and 4). Case 7b (loading Case 7 in 
Fig 2) keeps the web b/t value constant (either slender or stiff as defined below) but 
varies the flange b/t.  The flanges in beam sections (Case 6) are either connected to a 
very slender web (b/t=100) or to a stiff web (b/t=10). The results for Case 3 and Case 
6 with slender web sections agree well for all temperatures. Case 6 with slender web 
sections have greater buckling strength than Case 3 for all slenderness ratios except 
for b/t ≤ 10. For b/t ≤ 10, the slender web section which provides restraint for the 
flanges buckles first. This causes a drop in Fcr,u but it is not as pronounced as for Case 
5 with slender flange sections (see Figure 3). The results for Case 6 are always greater 
than those for isolated plates (Case 3 and 4). This is due to the translational (axial) 
resistance provided by the stiff web to the flanges. The difference in Fcr,u for stiff or 
slender (fixed or simply supported) restraint is more pronounced for flanges (Fig. 4), 
than for webs (Fig. 3).  For all temperatures, Case 7b with a stiff web exactly matches 
Case 4 (isolated flanges with fixed boundaries) so it looks like only one line is 
plotted. This is expected since stiff flanges provide an almost full rotational rigidity.  
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Case 7b with a slender web closely follows Case 3 (isolated flange with fixed 
boundaries) for all temperatures but only for larger flange b/t ratios. For flanges with 
a low b/t, the slender web buckles first and hence reduces the Fcr,u of the I-shape.  
 
Figure 4 also plots the AISC design curve for unstiffened plates based on the Steel 
Construction Manual [AISC, 2005] using Equations E7-4 through E7-6 (where Fcr/Fy 
= QsFy). Like the web study described previously, the AISC solution is independent 
of the web slenderness so that the AISC comparison can be made for all cases (Case 
3, 4, and both Case 6 with a slender and a stiff web). At temperatures T ≤ 100 °C, 
AISC design curve is in between Case 3 and Case 4, but closer to Case 3. This is 
expected since AISC design curve assumes that the isolated flange sections are 
neither simply supported nor fixed but somewhere in between. As the temperature 
increases, AISC gets closer to the buckling performance of Case 4 and Case 5 with a 
stiff web for b/t ≤ 30.  
 
VI - Conclusion 
  
In this paper, the post-buckling strength webs and flanges in a beam under fire 
conditions is investigated. The finite element models are validated against theoretical 
buckling strength of plates.  Two types of models were created: (1) isolated plates 
with idealized simply supported or fixed boundary conditions, and (2) plates 
assembled to form an I-shape.  Several load case I-shape models were created to 
represent different connections.  For example, the I-shape model with only the web 
axially loaded represented a simple shear connection design, the I-shape model with 
only the flanges axially loaded represented a top-and-seat connection design, and the 
model with the entire I-shape loaded represents a moment connection with a web 
connection component. 
 
Results of our study show the following: 
• Estimating the post-buckling capacity (Fcr,u) of a web or flange with isolated 

plates typically results in Fcr,u less than the results of a model with an I-shape 
assembly where only the flange or web is loaded.  The reason for this 
phenomenon is that, for example, if the web is loaded, some of the axial force is 
transferred to the flanges and the flanges provide axial restraint. 

• As the temperature in the plate increases, the isolated plate solution for Fcr,u 
develops better correlation to that based on the I-shape model. 

• The stiffness of the connecting element has a significant influence on Fcr,u.  For 
example, if a web is connected to a stiff flange, or a flange is connected to a stiff 
web, the Fcr,u is larger than if these elements were connected to more slender 
elements.  This effect of the connecting element stiffness on Fcr,u is more 
pronounced in flanges with axial loads than in webs. 

• In general, there is not too much of a difference in the results for loading the 
entire cross section versus loading components of it (unless the flange or web are 
too slender) 
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• The AISC design prediction for post-buckling strength of slender plates is 
generally unconservative for elevated temperatures, especially for plates 
connected to slender elements. 

 
Our goal as this research progresses is to develop predictive equations that determine 
when a beam flange or web will buckle during a fire. Since flange buckling marks the 
point of maximum compression force in the beam, it is important to be able to 
determine that force for developing a performance-based approach for fire safety.  
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