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Abstract 
 

Thermomechanical behavior of steel framed concrete slabs mainly depends on in plane normal forces that are 

developed as a result of mean temperature increase and large deflections. In plane normal forces can be determined 

by solving two dimensional continuum and equilibrium equations. In this paper, simplified method has been 

developed to consider large deflection caused tensile membrane forces to the current closed form equations of 

thermo-mechanical behavior of plates. The finite element analysis were carried out to validate the developed 

equations. Results of these analysis validated that the developed equations are 98% accurate to determine beam 

mid-length deflections and 90% accurate to determine plate mid-point deflections in the case of large deflections. 

Considered the validated equations, simplified methodology is developed to determine thermomechanical behavior 

of steel framed concrete slab and it is tested for specific composite floor geometry subjected to ISO834 fire while 

carrying a 5𝑘𝑁 𝑚2⁄  live load.  

 

Keywords: Structural Fire, Composite Floor, Fire, Beam with Large Deflection, Plate with Large Deflection, 

Tensile Membrane Action 

 

 

1 Introduction 
 

Steel-framed concrete slabs are commonly used in steel construction especially in high-rise buildings. An accurate 

estimation of fire performance of composite floor systems is therefore critical. While the finite element method 

has been widely used to determine the thermo-mechanical behavior of composite floors (Huang et al, 2000), 

developing these models is computationally expensive, time consuming and parametric studies are tedious. Due 

to these limitations, a simplified semi-analytical method is development in Matlab to estimate the thermo-

mechanical behavior of composite floors. 

 

In this study, an efficient and simplified algorithm is developed to calculate the deflection of the composite floor 

under the action of fire by taking account in plane normal forces due to mean temperature increase and large 

deflections due to thermal gradient. Once the deflection behavior is obtained, moments and tensile membrane 

forces can be estimated, hence the stresses developed along the section can be calculated. Knowing the axial and 

bending capacity of the composite floor, it becomes possible to properly design the floor subjected to fire. 

 

The current closed form equation that is developed to determine thermo-mechanical behavior of the plates does 

not include large deflection caused in planes normal forces, also known as tensile membrane forces (Ugural, 1981). 

During fire, large vertical deflections develop due to thermal gradient within the composite floor cross section 

from the bottom flange of the steel beam to the top surface of the concrete slab (Rotter and Usmani, 2000).  



ACE2016   

2 

 

2 Thermo-Mechanical Behavior of Concrete Slabs with Steel Beam in Composite Action 
 

 

2.1 Beam Deflection with Membrane Force and Temperature Gradient Effect 
 

In this section, the governing differential equation for the beam deflection under transverse loading, membrane 

(axial) force and temperature gradient is derived. Classical beam theory assumes that straight lines normal to the 

middle surface before deformation remain straight, normal to the middle surface and unchanged in length after the 

deformation. However, when the beam boundaries are restrained, in plane normal forces may arise as a result of 

temperature change or large deflections due to thermal gradient or large transverse loading and the assumption 

becomes invalid. Thus, Eq. 2.1.1 which represents governing differential equation for beam deflection under 

transverse loading must be revised to consider the axial forces. 

 

 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 = 𝑝 (2.1.1) 

 

 
(a)                                                                              (b) 

 

Figure 1. (a) Beam element subjected to transverse loading (b) Internal forces acting on infinitesimal beam 

length. 

 

Figure 1 represents the beam element that is subjected to transverse loading and in plane direct force. The internal 

forces acting on the infinitesimal length of the beam element is shown in Figure 1b. Considering the equilibrium 

of the moments acting on infinitesimal length of the beam element and also knowing that as the limit 𝑑𝑥 tends to 

zero and neglecting the shear force 𝑑𝑁𝑥𝑧 , the equilibrium of the moments leads to Eq. 2.1.2 and Eq. 2.1.3. 

 

 𝑁𝑥𝑧𝑑𝑥 − (𝑀𝑥 + 𝑑𝑀𝑥)+𝑀𝑥 = 0 (2.1.2) 

 

 𝑁𝑥𝑧 =
𝑑𝑀𝑥

𝑑𝑥
 (2.1.3) 

 

The condition ∑ 𝐹𝑧 = 0 then leads to Eq. 2.1.4. 

 

 𝑑𝑁𝑥𝑧 + 𝑝𝑑𝑥 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2 𝑑𝑥 = 0 (2.1.4) 

 

Rearranging Eq. 2.1.4 by dividing 𝑑𝑥 and substituting the moment resultants that also includes thermally induced 

stress resultant as defined with Eq. 2.1.5 the governing differential equation for beam deflection subjected to the 

combined transverse loading, normal force and thermal gradient is obtained as Eq. 2.1.6. 

 

 𝑀𝑥 = 𝐸𝐼
𝜕2𝑤

𝜕𝑥2 − 𝑀∗ (2.1.5) 

 

 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 = 𝑝 +
𝜕2𝑀∗

𝜕𝑥2 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2  (2.1.6) 

 

In which M∗ is the thermal stress resultant 

 

  M∗ = 𝐸𝛼 ∫ ∆𝑇(𝑧)𝑧𝑑𝑧
𝑡/2

−𝑡/2
 (2.1.7) 
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2.2 Simply Supported Beam Subjected to Uniform Transverse Loading and Thermal 

Gradient 
 

The governing beam deflection equation is solved for a simply supported beam in this section. It is possible to 

superimpose the deflection owing the temperature alone with those owing to transverse load. The boundary 

conditions of simply supported beam with length equals to L is shown with Eq. 2.2.1. 

 

 𝑤 = 0, 𝑢 = 0, 𝑀𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝐿 (2.2.1) 

 

For the boundary conditions shown with Eq. 2.2.1 the solution of the simply supported beam subjected to uniform 

transverse loading of 𝑝𝑜 is found in Eq. 2.2.2. 

 

 𝑤(𝑥) =
𝑝𝑜𝑥

24𝐸𝐼
(𝐿3 − 2𝐿𝑥2 + 𝑥3) (2.2.2) 

 

Due to superimposing of transverse loading and temperature varying over the thickness, the solution of Eq.2.1.6 

reduces to Eq. 2.2.3.  

 

 𝐸𝐼
𝜕4𝑤

𝜕𝑥4 =
𝜕2𝑀∗

𝜕𝑥2 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2  (2.2.3) 

 

Solution of Eq. 2.2.3 is obtained with representing thermal moment M∗ and deflection 𝑤 by the first term of a 

single Fourier sine series shown as Eq. 2.2.4 and Eq. 2.2.5 which of course satisfy the boundary conditions given 

with Eq. 2.2.1.  

 

 𝑤(𝑥) = 𝑤𝑇 sin
𝜋𝑥

𝐿
              (2.2.4)                              𝑀∗(𝑥) = 𝑀1

∗ sin
𝜋𝑥

𝐿
 (2.2.5) 

 

The Fourier coefficient 𝑤𝑇 represents the mid-length deflection of a beam. In plane normal force 𝑁𝑥is sum of the 

thermal force 𝑁∗ and the membrane force 𝑁𝑥𝑚 (Donnell, 1976), which are shown with Eq. 2.2.6 and Eq. 2.2.7. 

 

 N∗ = 𝐸𝛼 ∫ ∆𝑇(𝑧)𝑑𝑧
𝑡/2

−𝑡/2
    (2.2.6)       𝑁𝑥𝑚 = 𝐸𝐴

𝜋2𝑤𝑇
2

4𝐿2       (2.2.7)         𝑁𝑥 =  N∗ + 𝑁𝑥𝑚 (2.2.8) 

 

The compression in-plane normal forces must be inserted with (-) sign and the tensile in-plane forces must be 

inserted with (+) in to the Eq. 2.2.8. Substituting Eqs.2.2.4, 2.2.5 and 2.2.8 in to Eq.2.2.3, the cubic equation for a 

mid-length of the simply supported beam subjected to temperature gradient is obtained (P. Khazaeinejad et al, 

2015). Once the deflection of mid-length is calculated, deflection of any point on the beam length then can be 

calculated by Eq.2.2.4. 

 

 𝑤𝑇
3 + (

4𝐴

𝐼
−

4𝑁∗𝐿2

𝜋2𝐸𝐴
) 𝑤𝑇 +

16𝑀∗𝐿2

𝜋3𝐸𝐴
= 0 (2.2.9) 

 

 

2.3 Plate Deflection with Membrane Force and Temperature Gradient Effect 
 

According to the fundamental assumption of the small deflection theory of bending for isotropic, homogeneous, 

elastic, thin plates based on the geometry of deformation the mid-plane does not stretch. However, when the mid-

plane is strained subsequent to in plane normal forces, the fundamental assumption is no longer valid. If plate 

boundaries are restrained to lateral movement, the in plane normal forces may arise as a results of temperature 

change or large deflections due to thermal gradient or in the case of large transverse loading. Thus, Eq. 2.3.1 which 

represents governing differential equation for beam deflection under transverse loading should be revised to 

consider axial forces. 

 

 
𝜕4𝑤

𝜕𝑥4 + 2
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤

𝜕𝑦4 =
𝑝

𝐷
 (2.3.1)
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Consider a plate element of sides 𝑑𝑥 and 𝑑𝑦, under the action of direct forces𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦 = 𝑁𝑦𝑥which are 

functions of 𝑥 and 𝑦 only. Assume the body forces to be negligible. The top, front views of such an element and 

other resultants due to lateral force which also act on the element simultaneously are shown in Figure 2. 

 

Considering the sum of in plane normal forces in the 𝑥 direction shown in Figure 2, Eq. 2.3.2 is obtained.  

 

 (𝑁𝑥 +
𝜕𝑁𝑥

𝜕𝑥
𝑑𝑥)𝑑𝑦 cos 𝛽′ − 𝑁𝑥𝑑𝑦 cos 𝛽 (2.3.2) 

 

 
 

Figure 2. Stress resultants on plate element subjected to transverse loading and in plane normal forces. 

 

For small 𝛽, Eq.2.3.2 reduces to (
𝜕𝑁𝑥

𝜕𝑥
) 𝑑𝑥𝑑𝑦 and the sum of shear forces 𝑁𝑥𝑦𝑑𝑥 𝑖s treated in similar way and 

the condition ∑ 𝐹𝑥 = 0 and ∑ 𝐹𝑦 = 0 then leads to Eqs.2.3.3a and Eq.2.3.3b. 

 

 
𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝑦𝑥

𝜕𝑦
= 0                       (2.3.3a)                       

𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦

𝜕𝑦
= 0                         (2.3.3b) 

 

To describe equilibrium in the 𝑧 direction, it is necessary to consider the 𝑧 components of the in-plane forces acting 

at each edge of the element. The 𝑧 components of the forces acting on the 𝑥 edges equals to Eq. 2.3.4 or with small 

deflection assumption Eq. 2.3.5 

 

 −𝑁𝑥𝑑𝑦 𝑠𝑖𝑛 𝛽 + (𝑁𝑥 +
𝜕𝑁𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝑦 𝑠𝑖𝑛 𝐵′    (2.3.4)      𝑁𝑥

𝜕2𝑤

𝜕𝑥2 𝑑𝑥𝑑𝑦 +
𝜕𝑁𝑥

𝜕𝑥

𝜕𝑤

𝜕𝑥
𝑑𝑥𝑑𝑦    (2.3.5) 

 

The slope of the deflection in the 𝑦 direction on the 𝑥 edges equals to 
𝜕𝑤

𝜕𝑦
 𝑎𝑛𝑑 

𝜕𝑤

𝜕𝑦
+ (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) 𝑑𝑥. The 𝑧 component 

of the shear forces  𝑁𝑥𝑦  𝑎𝑛𝑑 𝑁𝑦𝑥 is obtained by Eq.2.3.6 and Eq.2.3.7. 

 

 𝑁𝑥𝑦 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
) 𝑑𝑥𝑑𝑦 +  

𝜕𝑁𝑥𝑦

𝜕𝑥

𝜕𝑤

𝜕𝑥
𝑑𝑥𝑑𝑦       (2.3.6)     𝑁𝑦𝑥 (

𝜕2𝑤

𝜕𝑥𝜕𝑦
) 𝑑𝑥𝑑𝑦 +  

𝜕𝑁𝑦𝑥

𝜕𝑦

𝜕𝑤

𝜕𝑥
𝑑𝑥𝑑𝑦 (2.3.7) 

 

For the forces in Figure 2, the condition ∑ 𝐹𝑧 = 0 then leads to Eq. 2.3.8. 
 
𝜕𝑄𝑥

𝜕𝑥
+

𝜕𝑄𝑦

𝜕𝑦
+ 𝑝 + 𝑁𝑥

𝜕2𝑤

𝜕𝑥2 + 𝑁𝑦
𝜕2𝑤

𝜕𝑦2 + 2𝑁𝑥𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ (

𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝑦𝑥

𝜕𝑦
)

𝜕𝑤

𝜕𝑥
+  (

𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦

𝜕𝑦
)

𝜕𝑤

𝜕𝑥
= 0 (2.3.8) 

 

It is observed that last 2 terms of the Eq.2.3.8 vanishes according to Eq.2.3.3a and Eq.2.3.3b.  According to Figure 

2, the equilibrium of the moments with respect to 𝑥 and 𝑦 axes is described by Eqs.2.3.9a and 2.3.9b.  

 

𝑄𝑥 =
𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
                         (2.3.9a)                         𝑄𝑦 =

𝜕𝑀𝑦

𝜕𝑦
+

𝜕𝑀𝑥𝑦

𝜕𝑥
                            (2.3.9b) 

 

Substituting moment resultants also including thermally induced stress resultants as defined Eq.2.3.10a, 

Eq.2.3.10b and Eq.2.3.10c (Ugural, 1981) to the Eq.2.3.9a and Eq.2.3.9b, the vertical shear forces 𝑄𝑥 and 𝑄𝑦can 

be shown as Eq2.3.10d and Eq2.3.10e. 
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 𝑀𝑥 = −𝐷 (
𝜕2𝑤

𝜕𝑥2
+

𝑣𝜕2𝑤

𝜕𝑦2
) −  

𝑀𝑥

(1−𝑣)
 (2.3.10a) 

 

 𝑀𝑦 = −𝐷 (
𝜕2𝑤

𝜕𝑥2 +
𝑣𝜕2𝑤

𝜕𝑦2 ) −  
𝑀𝑥

(1−𝑣)
 (2.3.10b) 

 

 𝑀𝑥𝑦 = −(1 − 𝑣)𝐷 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
) (2.3.10c) 

 

 𝑄𝑥 = −𝐷(
𝜕

𝜕𝑥
)∇2                      (2.3.10d)                      𝑄𝑦 = −𝐷(

𝜕

𝜕𝑦
)∇2                    (2.3.10e) 

 

Inserting Eq.2.3.10d and Eq. Eq.2.3.10e into the Eq.2.3.8, the governing differential equation for deflection of 

thin plates subjected to the combined transverse loading, normal forces and thermal gradient is finally obtained. 

 

 
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
=

1

𝐷
(𝑝 + 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
−

1

(1−𝑣)
𝛻2𝑀∗) (2.3.11) 

 

 

2.4 Simply Supported Plate Subjected to Uniform Transverse Loading and Thermal 

Gradient  

As mentioned in Section 2.3, it is possible to superimpose the deflection due the temperature and due to transverse 

load. The boundary conditions of simply supported plate with edge dimensions a and b is shown below. 

 

 𝑤 = 0, 𝑢 = 0, 𝑀𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝑎 (2.4.1a) 

 

 𝑤 = 0, 𝑣 = 0, 𝑀𝑦 = 0 𝑎𝑡 𝑦 = 0, 𝑏 (2.4.1b) 
 

The solution of governing deflection equation of simply supported plate subjected to uniform transverse loading 

of 𝑝𝑜 is found:  

 

 𝑤 =
16𝑝𝑜

𝜋6𝐷(1−𝑣)
∑ ∑

sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑥

𝑏

𝑚𝑛[[(
𝑚

𝑎
)2+(

𝑛

𝑏
)2]

2
+

𝑁𝑥
𝐷

(
𝑚

𝑎𝜋
)2+

𝑁𝑦

𝐷
(

𝑛

𝑏𝜋
)2]

   ∞
𝑛=1

∞

𝑚=1

for  𝑚, 𝑛 = 1, 3, 5 ⋯ (2.4.2) 

 

The developed simplified method does not take account effect of shear forces 𝑁𝑥𝑦 = 𝑁𝑦𝑥 . Once the transverse 

loading 𝑝0 and shear forces subtracted from Eq.2.3.10, it reduces to Eq. 2.4.3. 

 

 
𝜕4𝑤

𝜕𝑥4 + 2
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 +
𝜕4𝑤

𝜕𝑦4 =
1

𝐷
(𝑁𝑥

𝜕2𝑤

𝜕𝑥2 +𝑁𝑦
𝜕2𝑤

𝜕𝑦2 −
1

(1−𝑣)
𝛻2𝑀∗) (2.4.3) 

 

Solution of Eq.2.4.3 is obtained with representing thermal moment M∗ and deflection 𝑤 by the Fourier sine series 

shown as Eq.2.4.4 and Eq.2.4.5 which of course satisfy the boundary conditions. Moreover, the condition shown 

with Eq.2.4.6 which is derived by Eqs.2.3.10a and 2.3.10b at boundaries must be satisfied. 

 

 𝑤 = ∑ ∑ 𝑎𝑚𝑛sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
∞
𝑛=1

∞

𝑚=1
 (2.4.4) 

 

 𝑀∗ = ∑ ∑ 𝑝𝑚𝑛sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑦

𝑏
∞
𝑛=1

∞

𝑚=1
 (2.4.5) 

 

 𝐷∇2w = − 
𝑀𝑥

(1−𝑣)
 (2.4.6)
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Substituting Eqs.2.4.4, 2.4.5 in to Eq.2.4.3, the Fourier series equation to determine deflection at any point of 

simply supported plate subjected to temperature gradient over the thickness is obtained,  

 

 𝑤 =
16𝑀∗

𝜋4𝐷(1−𝑣)
∑ ∑

sin
𝑚𝜋𝑥

𝑎
sin

𝑛𝜋𝑥

𝑏
[(

𝑚

𝑎
)2+(

𝑛

𝑏
)2]

𝑚𝑛[[(
𝑚

𝑎
)2+(

𝑛

𝑏
)2]

2
+

𝑁𝑥
𝐷

(
𝑚

𝑎𝜋
)2+

𝑁𝑦

𝐷
(

𝑛

𝑏𝜋
)2]

 ∞
𝑛=1

∞

𝑚=1

for 𝑚, 𝑛 = 1, 3, 5 ⋯ (2.4.7) 

 

where the normal forces are found as stated below. Eq. 2.4.8a and 2.4.8b will be explained in detail in Section 4. 

 

 𝑁𝑥 =
 N∗

(1−𝑣)
 N∗ + 𝑁𝑥𝑚                   (2.4.8a)                   𝑁𝑦 =

 N∗

(1−𝑣)
+ 𝑁𝑦𝑚                  (2.4.8b) 

 

 

3. Validation of the Derived Governing Equations 
 

To validate the solutions of equations developed under Section 2.2 and 2.4, a series of finite element analysis were 

carried out. The beam that is used to validate Eq.2.2.9 is comprised of 5𝑚 long, 300𝑚𝑚 depth and 300𝑚𝑚 width. 

Material properties of the beam is taken as C20 concrete material properties with constant thermal expansion 

coefficient and modulus of elasticity. The thermal gradient through the depth of the beam element is considered 

as 𝑇𝑧 = 1℃/𝑚𝑚 where the mean temperature increases varies between 0℃ to 300℃ in increments of  50℃. 

 

The plate element that is used to validate Eq.2.4.7 is comprised of 5𝑚 long and 5𝑚 width and 200𝑚𝑚 depth. 

Material properties of the plate is taken as C20 concrete material properties with constant thermal expansion 

coefficient and modulus of elasticity. The thermal gradient through the depth of the plate is taken as 𝑇𝑧 = 2℃/𝑚𝑚 

with mean temperature increases varies between 0℃ to 150℃ in increments of 25℃. 

 

Figure 3 shows that results of Eq.2.2.9 nearly same with finite element model results. Nearly 10% deviation 

obtained between the results of finite element model and Eq.2.4.7 for plate mid-point deflections in the case of 

large deflections. While using Eq.2.4.7, it is assumed that total membrane forces along the plate edges are 

uniformly distributed along the edges. Because the tensile membrane forces that are developed along the edges are 

related with square of the deflection, once the deflection of plate increases the deviation between the finite element 

model and Eq.2.4.7 also increases.  

 

 
 

Figure 3.Mid-Point Deflection of Beam with Tz = 1℃/mm and Plate with Tz = 2℃/mm 

 

 

4. Simplified Method to Calculate Steel Framed Concrete Slab Deflection Behavior 

under Fire 

The simplified method uses the equations that have been derived in Section 2.4.2 and 2.4.3 to calculate the 

deflection behavior of simply supported steel beam concrete slab composite floor. In the case of fire, the 

temperature distribution in the beam and the concrete slab differs across the composite section depth. Due to 

change in the mechanical properties in different temperatures, concrete slab is layered with equal length elements 

with respect to its depth and steel beam is layered as bottom flange, top flange and web. Each layer’s mechanical 

properties are calculated separately and transformed area method is used to find equivalent mechanical properties 

of the composite section. 
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When the fire initiates, temperature of steel beam increases very rapidly compared with the temperature of the 

concrete slab. As a result, the steel beam losses 80% of its stiffness when the beam average temperature reaches 

to  700℃ and can therefore be neglected in the calculations. By knowing the temperature distribution along the 

depth of the composite section and calculating each layer mechanical properties with their respective temperature, 

the resultant force and moment in the composite cross section can be calculated using the transformed area method 

(Gere, 2004). Knowing the thermally induced in plane normal force and moment, Eq.2.2.9 and Eq.2.2.2 can be 

employed separately and results can be superimposed to find the mid-length deflection of the composite floor until 

the average temperature of steel beam reaches to 700℃. Once the average temperature of steel beam reaches to 

700℃, the deflection behavior of the composite section is determined by superimposing results of Eq.2.4.2 and 

Eq.2.4.7 as mentioned before. However, to start to use Eq.2.4.2 and Eq.2.4.7 at time instant that average steel beam 

temperature is 700℃, uniformly distributed in plane normal forces for the plate edges must be known.  

 

Concrete slab can be thought as comprised of finite strips as shown with Figure 

4 and mid-length deflections of these strips can be determined by Eq.2.4.7, and 

the tensile membrane forces in each strip is calculated by Eq.2.2.7. The tensile 

membrane forces in each strip are assumed to be uniformly distributed along the 

edge lengths. It is important to note that, the Eq.2.4.2 and Eq.2.4.7 will give the 

deflection of each point on the plate element without any initial curvature, hence 

the previously calculated deflection must be added to the deflection calculated by 

Eq.2.4.2.  

 

The algorithm that describes the simplified method to determine the thermo-

mechanical behavior of steel beam concrete slab composite floor subjected to fire 

is shown in Figure 5. 

 

 
 

Figure 5. Simplified Method to Calculate Steel Framed Concrete Slab Deflection Behavior under the Action of 

Fire. 

 

 

5. Results  
 

Composite floor that is comprised of 5𝑚 length, 5𝑚 width, 200𝑚𝑚 depth C20 concrete slab without 

reinforcement and  5𝑚 long IPE330 steel beam that is located at the mid length of the one of the edge is analyzed 

under the action of 120 minutes ISO834 fire. The temperature of the each layer of concrete slab and steel beam is 

obtained by Abaqus heat transfer analysis (DS-Simulia, 2010). Non-linear material behavior is taken into account 

by a reduced stiffness method with an efficient linear elastic calculation. Self-weight of the steel framed concrete 

slab is ignored and it is assumed that the composite floor carries 5𝑘𝑁 𝑚2⁄  live load. 

Figure 4. Finite Strips 

Demonstration of 

Rectangular Plate 
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Mid-point deflection behavior of the composite section is shown with Figure 6. The composite section starts to 

deflect with initiation of the fire and nearly at 8 minute of the analysis, the effect of the tensile membrane forces 

increases due to initiation of the large deflections and the rate of deflection reduces. When the average temperature 

of the steel beam reaches 700℃ at 21 minutes, sudden increase in the deflection is obtained due to assumption that 

steel beam losses its strength at 700℃. After that point, deflection behavior of composite floor is determined by 

the plate equation with considering uniformly distributed in plane tensile membrane forces and thermally induced 

in plane normal forces. Because large deflections have already developed in the concrete slab, deflection behavior 

is similar to the time instant just before the average temperature of the steel beam is 700℃. Due to the loss of the 

steel beam, no decrease in deflection is observed in the analysis. It is clearly seen from Figure 6 that the rate of 

deflection of the composite floor reduces in each time step because of the increasing tensile membrane force with 

large deflection. 

 

 
 

Figure 6. Mid-Point deflection of Composite Floor subjected to the ISO834 fire for 2 hours. 

 

 

6. Conclusion 
 

This paper presents an efficient method to determine deflection behavior of the steel beam-concrete slab composite 

floor subjected to fire. In this method, a computationally expensive finite element method is replaced by a fast and 

versatile semi-analytical method programmed in Matlab. It is assumed that plate is comprised of finite strips in 

both directions and the tensile membrane forces along these strips are calculated separately and distributed 

uniformly along the edges of the plates. At low mean temperature increase, the developed simplified method 

matches almost exactly with the finite element model solution, when the mean temperature increases the method 

is clearly capable of simulating the response of with reasonable accuracy. 

 

The fast and reliable algorithm allows the structural fire engineers to study with different geometry and fire curves 

for the design of composite floors and therefore parametric studies become fast and reliable. Further modifications 

will be done in the future work on the methodology and the algorithm to consider effect of the steel deck, the 

reinforcement and material non-linearity with considering plastic strains. 
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