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Abstract

Thermomechanical behavior of steel framed concrete slabs mainly depends on in plane normal forces that are
developed as a result of mean temperature increase and large deflections. In plane normal forces can be determined
by solving two dimensional continuum and equilibrium equations. In this paper, simplified method has been
developed to consider large deflection caused tensile membrane forces to the current closed form equations of
thermo-mechanical behavior of plates. The finite element analysis were carried out to validate the developed
equations. Results of these analysis validated that the developed equations are 98% accurate to determine beam
mid-length deflections and 90% accurate to determine plate mid-point deflections in the case of large deflections.
Considered the validated equations, simplified methodology is developed to determine thermomechanical behavior
of steel framed concrete slab and it is tested for specific composite floor geometry subjected to 1SO834 fire while
carrying a 5kN/m? live load.

Keywords: Structural Fire, Composite Floor, Fire, Beam with Large Deflection, Plate with Large Deflection,
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1 Introduction

Steel-framed concrete slabs are commonly used in steel construction especially in high-rise buildings. An accurate
estimation of fire performance of composite floor systems is therefore critical. While the finite element method
has been widely used to determine the thermo-mechanical behavior of composite floors (Huang et al, 2000),
developing these models is computationally expensive, time consuming and parametric studies are tedious. Due
to these limitations, a simplified semi-analytical method is development in Matlab to estimate the thermo-
mechanical behavior of composite floors.

In this study, an efficient and simplified algorithm is developed to calculate the deflection of the composite floor
under the action of fire by taking account in plane normal forces due to mean temperature increase and large
deflections due to thermal gradient. Once the deflection behavior is obtained, moments and tensile membrane
forces can be estimated, hence the stresses developed along the section can be calculated. Knowing the axial and
bending capacity of the composite floor, it becomes possible to properly design the floor subjected to fire.

The current closed form equation that is developed to determine thermo-mechanical behavior of the plates does
not include large deflection caused in planes normal forces, also known as tensile membrane forces (Ugural, 1981).
During fire, large vertical deflections develop due to thermal gradient within the composite floor cross section
from the bottom flange of the steel beam to the top surface of the concrete slab (Rotter and Usmani, 2000).



ACE2016

2 Thermo-Mechanical Behavior of Concrete Slabs with Steel Beam in Composite Action

2.1 Beam Deflection with Membrane Force and Temperature Gradient Effect

In this section, the governing differential equation for the beam deflection under transverse loading, membrane
(axial) force and temperature gradient is derived. Classical beam theory assumes that straight lines normal to the
middle surface before deformation remain straight, normal to the middle surface and unchanged in length after the
deformation. However, when the beam boundaries are restrained, in plane normal forces may arise as a result of
temperature change or large deflections due to thermal gradient or large transverse loading and the assumption
becomes invalid. Thus, Eq. 2.1.1 which represents governing differential equation for beam deflection under
transverse loading must be revised to consider the axial forces.
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Figure 1. (a) Beam element subjected to transverse loading (b) Internal forces acting on infinitesimal beam
length.

Figure 1 represents the beam element that is subjected to transverse loading and in plane direct force. The internal
forces acting on the infinitesimal length of the beam element is shown in Figure 1b. Considering the equilibrium
of the moments acting on infinitesimal length of the beam element and also knowing that as the limit d, tends to
zero and neglecting the shear force dN,,, the equilibrium of the moments leads to Eq. 2.1.2 and Eq. 2.1.3.

Ny dx — (My + dM)+M, = 0 2.12)

aM
N,, = 2%
XZ dx

(2.1.3)

The condition Y’ F, = 0 then leads to Eq. 2.1.4.

2w
dN,, +pdx + N,—dx =0 (2.1.4)

X 9x2

Rearranging Eq. 2.1.4 by dividing dx and substituting the moment resultants that also includes thermally induced
stress resultant as defined with Eq. 2.1.5 the governing differential equation for beam deflection subjected to the
combined transverse loading, normal force and thermal gradient is obtained as Eq. 2.1.6.

2%w %
M, = Elﬁ—M (2.1.5)
o*w a*m* a%w
El a2t p+ 922 + Nxﬁ (2.1.6)

In which M* is the thermal stress resultant
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AT (z)zdz (2.1.7)
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2.2 Simply Supported Beam Subjected to Uniform Transverse Loading and Thermal
Gradient

The governing beam deflection equation is solved for a simply supported beam in this section. It is possible to
superimpose the deflection owing the temperature alone with those owing to transverse load. The boundary
conditions of simply supported beam with length equals to L is shown with Eq. 2.2.1.

w=0u=0M,=0atx=0,L (2.2.1)

For the boundary conditions shown with Eq. 2.2.1 the solution of the simply supported beam subjected to uniform
transverse loading of p, is found in Eq. 2.2.2.

w(x) = % (L3 — 2Lx?% + x3) (2.2.2)

Due to superimposing of transverse loading and temperature varying over the thickness, the solution of Eq.2.1.6
reduces to Eq. 2.2.3.

04 9%Mm* 0%
= = + N, — (2.2.3)

El ax*  9x2 * 0x2

Solution of Eq. 2.2.3 is obtained with representing thermal moment M* and deflection w by the first term of a
single Fourier sine series shown as Eq. 2.2.4 and Eq. 2.2.5 which of course satisfy the boundary conditions given
with Eq. 2.2.1.

w(x) = wr sin—- (2.24) M*(x) = M; sin™ (2.25)

The Fourier coefficient w; represents the mid-length deflection of a beam. In plane normal force N,is sum of the
thermal force N* and the membrane force N,,,, (Donnell, 1976), which are shown with Eqg. 2.2.6 and Eq. 2.2.7.

\ t/2
N* = Ea f_t/z

2,2
AT(z)dz (226) Ny, =EA ”JZ’T 2.2.7) Ny= N4+ N,,, (228)

The compression in-plane normal forces must be inserted with (-) sign and the tensile in-plane forces must be
inserted with (+) in to the Eq. 2.2.8. Substituting Egs.2.2.4, 2.2.5 and 2.2.8 in to Eq.2.2.3, the cubic equation for a
mid-length of the simply supported beam subjected to temperature gradient is obtained (P. Khazaeinejad et al,
2015). Once the deflection of mid-length is calculated, deflection of any point on the beam length then can be
calculated by Eq.2.2.4.

44 4N*L2) 16M* L%
U T

3 —_— —_—
wr + ( I m2EA T3EA 0 (22.9)

2.3 Plate Deflection with Membrane Force and Temperature Gradient Effect

According to the fundamental assumption of the small deflection theory of bending for isotropic, homogeneous,
elastic, thin plates based on the geometry of deformation the mid-plane does not stretch. However, when the mid-
plane is strained subsequent to in plane normal forces, the fundamental assumption is no longer valid. If plate
boundaries are restrained to lateral movement, the in plane normal forces may arise as a results of temperature
change or large deflections due to thermal gradient or in the case of large transverse loading. Thus, Eq. 2.3.1 which
represents governing differential equation for beam deflection under transverse loading should be revised to
consider axial forces.

04w o*w o‘w  p
— == 2.3.1
dx* dx209y?2 + ay* D (23.1)
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Consider a plate element of sides dx and dy, under the action of direct forcesN,, N,, and N,, = N,,which are

functions of x and y only. Assume the body forces to be negligible. The top, front views of such an element and
other resultants due to lateral force which also act on the element simultaneously are shown in Figure 2.

Considering the sum of in plane normal forces in the x direction shown in Figure 2, Eq. 2.3.2 is obtained.

(N, + dx)dy cos B’ — N,dy cos 8 (23.2)
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Figure 2. Stress resultants on plate element subjected to transverse loading and in plane normal forces.

For small 8, Eq.2.3.2 reduces to ( Fw ) dxdy and the sum of shear forces N. N, dx is treated in similar way and
the condition )} F, = 0 and }, F,, = 0 then leads to Egs.2.3.3a and Eq.2.3.3b.

ON, | ONyyx
ox dy

ONyy | Ny

=0 (2.3.3) =0 (2.3.3b)

ox dy

To describe equilibrium in the z direction, it is necessary to consider the z components of the in-plane forces acting
at each edge of the element. The z components of the forces acting on the x edges equals to Eq. 2.3.4 or with small
deflection assumption Eq. 2.3.5

—N. dysmﬁ+(N + e dx)dysmB (234) N W 1x dy +a xa

x62

dxdy (2.3.5)

The slope of the deflection in the y direction on the x edges equals to — and — + ( ) dx. The z component
of the shear forces N,, and N, is obtained by Eq.2.3.6 and Eq.2.3. 7

x a xa
ny( )d xdy + 2 “2 ¥ ixdy  (236) Nyx< )d xdy + 2 2222 dxdy (237)

For the forces in Figure 2, the condition Y F, = 0 then leads to Eq. 2.3.8.

2. , 90 2w T (e ) M) D | (May Oy O _
Ox +— +p +Nx I Ny 3572 +2ny axay+ Y + 3y ) ox + o + oy Jox 0 (2.3.8)

It is observed that last 2 terms of the Eq.2.3.8 vanishes according to Eq.2.3.3a and Eq.2.3.3b. According to Figure
2, the equilibrium of the moments with respect to x and y axes is described by Eqgs.2.3.9a and 2.3.9b.

oMy = OMyy

oM oM
_ y Xy
Qx T ax + ay

(2.3.9a) Q=5+

(2.3.9b)

Substituting moment resultants also including thermally induced stress resultants as defined Eq.2.3.10a,
Eq.2.3.10b and Eq.2.3.10c (Ugural, 1981) to the Eq.2.3.9a and Eq.2.3.9b, the vertical shear forces Q, and @, can
be shown as Eq2.3.10d and Eg2.3.10e.
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M, =-D (3% + ) - (2.3.100)
M, = D ( oy ) (1 ~ (2.3.10)
Myy = =(1=v)D( axay) (2.3.100)
Q, = —D(%)VZ (2.3.10d) Qy = —D(%)V2 (2.3.10e)

Inserting Eq.2.3.10d and Eq. Eq.2.3.10e into the Eq.2.3.8, the governing differential equation for deflection of
thin plates subjected to the combined transverse loading, normal forces and thermal gradient is finally obtained.

04w o*w w1 22w 2%w 2%w 1
— — == N,—+N,—+2N —
x4 dx20y? + dy* D (P + Ny dx2 +hy dy? tolNxy oxdy (1-v)

ViM™) (2.3.11)

2.4 Simply Supported Plate Subjected to Uniform Transverse Loading and Thermal
Gradient

As mentioned in Section 2.3, it is possible to superimpose the deflection due the temperature and due to transverse
load. The boundary conditions of simply supported plate with edge dimensions a and b is shown below.

w=0u=0M,=0atx=0,a (2.4.1a)
w=0,v=0M,=0aty=0,b (2.4.1b)

The solution of governing deflection equation of simply supported plate subjected to uniform transverse loading
of p, is found:

=T S —— SmT,S;mT for mn=1,3,5 -(242)
moA=Y) /T | [y (] HE G e

The developed simplified method does not take account effect of shear forces Ny, = N,,,. Once the transverse
loading p, and shear forces subtracted from Eq.2.3.10, it reduces to Eq. 2.4.3.

04w o*w o*w l(N 0%w 62w
dx* x29y2 = dy* D

- 2
vo PNy 5 — @ U)V M") (2.4.3)

Solution of Eqg.2.4.3 is obtained with representing thermal moment M* and deflection w by the Fourier sine series
shown as Eq.2.4.4 and Eq.2.4.5 which of course satisfy the boundary conditions. Moreover, the condition shown
with Eq.2.4.6 which is derived by Egs.2.3.10a and 2.3.10b at boundaries must be satisfied.

(o]
w = Y% A Sin == sin % (2.4.4)
m=1
*© mnx nm
M* = Y1 PmnSin — sinTy (2.4.5)
m=1
Mx
DV?w = — T (2.4.6)
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Substituting Eqs.2.4.4, 2.4.5 in to Eq.2.4.3, the Fourier series equation to determine deflection at any point of
simply supported plate subjected to temperature gradient over the thickness is obtained,

16M" i sin™"= sin E[(—)2 @?

W=—— Y=
" 1mn[[(;)2+(3)2] 2+ ey

74D (1-v) form,n=1,3,5 --- (2.4.7)

m=1
where the normal forces are found as stated below. Eq. 2.4.8a and 2.4.8b will be explained in detail in Section 4.

N* + Ny (2.4.83) N, = % + Ny (2.4.8b)

Ny = (1 v)

3. Validation of the Derived Governing Equations

To validate the solutions of equations developed under Section 2.2 and 2.4, a series of finite element analysis were
carried out. The beam that is used to validate Eq.2.2.9 is comprised of 5m long, 300mm depth and 300mm width.
Material properties of the beam is taken as C20 concrete material properties with constant thermal expansion
coefficient and modulus of elasticity. The thermal gradient through the depth of the beam element is considered
as T, = 1°C/mm where the mean temperature increases varies between 0°C to 300°C in increments of 50°C.

The plate element that is used to validate Eq.2.4.7 is comprised of 5m long and 5m width and 200mm depth.
Material properties of the plate is taken as C20 concrete material properties with constant thermal expansion
coefficient and modulus of elasticity. The thermal gradient through the depth of the plate is taken as T, = 2°C/mm
with mean temperature increases varies between 0°C to 150°C in increments of 25°C.

Figure 3 shows that results of Eq.2.2.9 nearly same with finite element model results. Nearly 10% deviation
obtained between the results of finite element model and Eq.2.4.7 for plate mid-point deflections in the case of
large deflections. While using Eq.2.4.7, it is assumed that total membrane forces along the plate edges are
uniformly distributed along the edges. Because the tensile membrane forces that are developed along the edges are
related with square of the deflection, once the deflection of plate increases the deviation between the finite element
model and Eq.2.4.7 also increases.
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Figure 3.Mid-Point Deflection of Beam with T, = 1°C/mm and Plate with T, = 2°C/mm

4. Simplified Method to Calculate Steel Framed Concrete Slab Deflection Behavior
under Fire

The simplified method uses the equations that have been derived in Section 2.4.2 and 2.4.3 to calculate the
deflection behavior of simply supported steel beam concrete slab composite floor. In the case of fire, the
temperature distribution in the beam and the concrete slab differs across the composite section depth. Due to
change in the mechanical properties in different temperatures, concrete slab is layered with equal length elements
with respect to its depth and steel beam is layered as bottom flange, top flange and web. Each layer’s mechanical
properties are calculated separately and transformed area method is used to find equivalent mechanical properties
of the composite section.
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When the fire initiates, temperature of steel beam increases very rapidly compared with the temperature of the
concrete slab. As a result, the steel beam losses 80% of its stiffness when the beam average temperature reaches
to 700°C and can therefore be neglected in the calculations. By knowing the temperature distribution along the
depth of the composite section and calculating each layer mechanical properties with their respective temperature,
the resultant force and moment in the composite cross section can be calculated using the transformed area method
(Gere, 2004). Knowing the thermally induced in plane normal force and moment, Eq.2.2.9 and Eq.2.2.2 can be
employed separately and results can be superimposed to find the mid-length deflection of the composite floor until
the average temperature of steel beam reaches to 700°C. Once the average temperature of steel beam reaches to
700°C, the deflection behavior of the composite section is determined by superimposing results of Eq.2.4.2 and
Eq.2.4.7 as mentioned before. However, to start to use Eq.2.4.2 and Eq.2.4.7 at time instant that average steel beam
temperature is 700°C, uniformly distributed in plane normal forces for the plate edges must be known.

Concrete slab can be thought as comprised of finite strips as shown with Figure x
4 and mid-length deflections of these strips can be determined by Eq.2.4.7, and
the tensile membrane forces in each strip is calculated by Eq.2.2.7. The tensile — : >

membrane forces in each strip are assumed to be uniformly distributed along the BN
edge lengths. It is important to note that, the Eq.2.4.2 and Eq.2.4.7 will give the . 3
deflection of each point on the plate element without any initial curvature, hence i
the previously calculated deflection must be added to the deflection calculated by ;
Eq.2.4.2. g
The alg_orlthm thgt describes the simplified method to_ determine _the therm_o— Figure 4. Finite Strips
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Figure 5. Simplified Method to Calculate Steel Framed Concrete Slab Deflection Behavior under the Action of

Fire.

5. Results

Composite floor that is comprised of 5m length, 5m width, 200mm depth C20 concrete slab without
reinforcement and 5m long IPE330 steel beam that is located at the mid length of the one of the edge is analyzed
under the action of 120 minutes 1SO834 fire. The temperature of the each layer of concrete slab and steel beam is
obtained by Abaqus heat transfer analysis (DS-Simulia, 2010). Non-linear material behavior is taken into account
by a reduced stiffness method with an efficient linear elastic calculation. Self-weight of the steel framed concrete
slab is ignored and it is assumed that the composite floor carries 5kN/m? live load.
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Mid-point deflection behavior of the composite section is shown with Figure 6. The composite section starts to
deflect with initiation of the fire and nearly at 8 minute of the analysis, the effect of the tensile membrane forces
increases due to initiation of the large deflections and the rate of deflection reduces. When the average temperature
of the steel beam reaches 700°C at 21 minutes, sudden increase in the deflection is obtained due to assumption that
steel beam losses its strength at 700°C. After that point, deflection behavior of composite floor is determined by
the plate equation with considering uniformly distributed in plane tensile membrane forces and thermally induced
in plane normal forces. Because large deflections have already developed in the concrete slab, deflection behavior
is similar to the time instant just before the average temperature of the steel beam is 700°C. Due to the loss of the
steel beam, no decrease in deflection is observed in the analysis. It is clearly seen from Figure 6 that the rate of
deflection of the composite floor reduces in each time step because of the increasing tensile membrane force with
large deflection.
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Figure 6. Mid-Point deflection of Composite Floor subjected to the 1ISO834 fire for 2 hours.

6. Conclusion

This paper presents an efficient method to determine deflection behavior of the steel beam-concrete slab composite
floor subjected to fire. In this method, a computationally expensive finite element method is replaced by a fast and
versatile semi-analytical method programmed in Matlab. It is assumed that plate is comprised of finite strips in
both directions and the tensile membrane forces along these strips are calculated separately and distributed
uniformly along the edges of the plates. At low mean temperature increase, the developed simplified method
matches almost exactly with the finite element model solution, when the mean temperature increases the method
is clearly capable of simulating the response of with reasonable accuracy.

The fast and reliable algorithm allows the structural fire engineers to study with different geometry and fire curves
for the design of composite floors and therefore parametric studies become fast and reliable. Further modifications
will be done in the future work on the methodology and the algorithm to consider effect of the steel deck, the
reinforcement and material non-linearity with considering plastic strains.
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