CE505
APPLIED STOCHSTIC ANALYSIS & MODELLING

TERM PROJECT

BOTTLENECK PROBLEM IN THE BOĞAZİÇİ UNIVERSITY ETHERNET NETWORK

PRESENTED TO PROF. EMRE OTAY

PROJECT TEAM: OLEG MOROZOV
DZAMBOLAT TOULATOV
Abstract

As modern business applications become more network aware and mature, they are placing increasing burdens on the underlying network architecture. Applications, such as networked digital video, exact high bandwidth and low latency requirements in order to function properly.

One of the most frequent and severe problems in networks are bottlenecks. Although network breakthroughs repeatedly remove bottlenecks and provide new opportunities, a pattern appears as we attempt to scale up in capability and capacity without limit: every old bottleneck broken reveals another.

Understanding the bottlenecks, the corresponding solutions and potential upper bounds is an important factor in increasing overall network efficiency.

In this project data obtained from the of Boğaziçi University Ethernet network is analyzed using different probabilistic and statistical methods, using stochastic analysis identification of bottlenecks performed and different solutions proposed.
Table of Contents

ABSTRACT .. 2
TABLE OF CONTENTS ... 3
LIST OF TABLES & FIGURES... 4
1 INTRODUCTION.. 4
1.1 INTRODUCTION TO NETWORKS... 4
1.2 ETHERNET .. 7
1.3 IDENTIFICATION OF PROBLEM... 9
1.3.1 TECHNICAL APPROACH ... 9
1.3.2 MATHEMATICAL APPROACH .. 10
2 DATA ACQUISITION ... 10
2.1 MRTG .. 10
2.2 UNIVERSITY CAFETERIA DATA ... 11
3 DATA PROCESSING AND INTERPRITATION.. 12
3.1 EXTRACTION AND CLEARING .. 12
3.2 CAFETERIA DATA ADJUSTMENTS .. 12
4 STOCHASTIC ANALYSIS... 12
4.1 ANALYSIS IN TIME DOMAIN.. 12
4.2 ANALYSIS IN FREQUENCY DOMAIN .. 14
4.3 INTERPRITATION OF RESULTS ... 17
5 OPTIMIZATION .. 17
5.1 METHODOLOGY ... 17
5.2 SOFTWARE DEVELOPMENT... 18
5.2.1 GAMS SOLVER IDENTIFICATION OF PARAMETERS....................................... 18
5.2.2 DETERMINATION OF OPTIMIZATION FUNCTION... 18
5.3 INTERFACE DEVELOPMENT... 19
5.4 CASE STUDY TO DETERMINE EFFICIENCY GAIN ... 20
6 INTERPRITATION OF RESULTS.. 21
6.1 SUMMARY OF FINDINGS... 21
6.2 FINAL RESULT AND PROPOSED SOLUTION... 22
7 CONCLUSION.. 23
APPENDIX A: MATLAB SOURCE CODE ... 24
APPENDIX B: GAMS AND C++ SOURCE CODE ... 25
LIST OF TABLES & FIGURES

Fig 1. Turkey Internet ISP(Internet Service Provider) Network…………………………
Fig.2 Zoomed part of Fig.1 containing Boğaziçi University…………………………
Fig.3 Sample Ethernet Network…………………………………………………………
Fig.4 Boğaziçi University Ethernet……………………………………………………
Fig.5 Sample MRTG output………………………………………………………………
Fig. 6 Cafeteria vs. Time……………………………………………………………………
Fig.7 North Campus Internet Traffic Data………………………………………………
Fig.8 South Campus Internet Traffic Data………………………………………………
Fig.9 Hisar Campus Internet Traffic Data………………………………………………
Fig. 10 Cross-Correlation Hisar-Cafeteria………………………………………………
Fig. 11 Hisar Camp. Spectral Density Function………………………………………..
Fig. 12 South Camp. Spectral Density Function………………………………………..
Fig. 13 Main server Spectral Density Function………………………………………..
Fig. 14 Hisar–South Cross Correlation…………………………………………………..
Fig.15 GAMS running…………………………………………………………………….
Fig.16 Interface Developed………………………………………………………………
Fig.17 Demand not satisfied before optimization………………………………………
Fig. 18 Demand not satisfied after optimization………………………………………
Table 1.Boğaziçi Cafeteria Data…………………………………………………………..

1 INTRODUCTION

1.1 INTRODUCTION TO NETWORKS

Over a hundred years ago the world was transformed at the hands of the new industrial age. Steel and iron came to replace the agrarian cotton and wool. Occupations changed, as did the pace of life. Manufacturing processes, formerly measured in weeks, now are accomplished in mere days. Capital was pivotal to ensuring the security of businesses. Copious amounts of capital allowed the purchase of the biggest and fastest machines for production, in essence, the rights for means of production. Nevertheless, the steel and iron of the industrial age has been slowly conquered and toppled by a new amorphous entity: The Information Age.

Information is the new Holy Grail. The strategies and weapons of business are now defined in terms of information. Information is power; it will be the capital of the new millennium. How fast and how much information businesses can review, analyze, and assimilate plays the critical role in guaranteeing marketplace success.

Money talks. And it talks more clearly about priorities than anything else. If you look at the statistics, information has become the most important way for companies to invest in their future. Information technologies, computers, telephony, video, etc. have become the preferred business tooling investment for corporations.

In analyzing the ascension of the information age, one must also dwell on its intertwined
nature with the computing sciences. After all, the remarkable evolutionary track of computers engendered the information age. The creation of the transistor fifty years ago fueled a computing revolution that no one could have imagined. The machines we control today are orders of magnitude faster than yesteryear’s, and if we are to believe Moore’s Law of semiconductor capacity and speed, the trend has no foreseeable end in sight. However, Moore’s Law has thus far only been applicable to semiconductor densities and speeds. Left behind and in dire need of improvement are the interconnect technology (i.e. I/O subsystem) and the management software (i.e. the operating system). One of the areas where the semiconductor and interconnect discrepancies have come to bear is in the networking performance, especially of PC-based network servers. Computer networking technologies are the glue that binds these elements together. The public Internet allows businesses around the world to share information with each other and their customers. The global computer network known as the World Wide Web provides services that let consumers buy books, clothes, and even cars online, or auction those same items off when no longer wanted.

Networking allows one computer to send information to and receive information from another. We may not always be aware of the numerous times we access information on computer networks. Certainly the Internet is the most conspicuous example of computer networking, linking millions of computers around the world, but smaller networks play a roll in information access on a daily basis. Many public libraries have replaced their card catalogs with computer terminals that allow patrons to search for books far more quickly and easily. Airports have numerous screens displaying information regarding arriving and departing flights. Many retail stores feature specialized computers that handle point-of-sale transactions. In each of these cases, networking allows many different devices in multiple locations to access a shared repository of data.

We can classify network technologies as belonging to one of two basic groups. **Local area network** (LAN) technologies connect many devices that are relatively close to each other, usually in the same building. The library terminals that display book information would connect over a local area network. **Wide area network** (WAN) technologies connect a smaller number of devices that can be many kilometers apart. For example, if two libraries at the opposite ends of a city wanted to share their book catalog information, they would most likely make use of a wide area network technology, which could be a dedicated line leased from the local telephone company, intended solely to carry their data.

In comparison to WANs, LANs are faster and more reliable, but improvements in technology continue to blur the line of demarcation. Fiber optic cables have allowed LAN technologies to connect devices tens of kilometers apart, while at the same time greatly improving the speed and reliability of WANs.

At the below Fig.1,2 we can see Turkey ISP network and the place of Boğaziçi University in this network.
FIG 1. Turkey Internet ISP (Internet Service Provider) Network
1.2 ETHERNET

In 1973, at Xerox Corporation’s Palo Alto Research Center (more commonly known as PARC), researcher Bob Metcalfe designed and tested the first Ethernet network. While working on a way to link Xerox’s "Alto" computer to a printer, Metcalfe developed the physical method of cabling that connected devices on the Ethernet as well as the standards that governed communication on the cable. Ethernet has since become the most popular and most widely deployed network technology in the world. Many of the issues involved with Ethernet are common to many network technologies, and understanding how Ethernet addressed these issues can provide a foundation that will improve your understanding of networking in general.

The Ethernet standard has grown to encompass new technologies as computer networking has matured, but the mechanics of operation for every Ethernet network today stem from Metcalfe’s original design. The original Ethernet described communication over a single cable shared by all devices on the network. Once a device attached to this cable, it had the ability to communicate with any other attached device. This allows the network to expand to
accommodate new devices without requiring any modification to those devices already on the network.

Ethernet is a local area technology, with networks traditionally operating within a single building, connecting devices in close proximity. At most, Ethernet devices could have only a few hundred meters of cable between them, making it impractical to connect geographically dispersed locations. Modern advancements have increased these distances considerably, allowing Ethernet networks to span tens of kilometers.

Ethernet follows a simple set of rules that govern its basic operation. To better understand these rules, it is important to understand the basics of Ethernet terminology.

- **Medium** - Ethernet devices attach to a common medium that provides a path along which the electronic signals will travel. Historically, this medium has been coaxial copper cable, but today it is more commonly a twisted pair or fiber optic cabling.
- **Node** - Devices that attach to that segment are stations or nodes.
- **Frame** - The nodes communicate in short messages called frames, which are variably sized chunks of information.

Frames are analogous to sentences in human language. In English, we have rules for constructing our sentences: We know that each sentence must contain a subject and a predicate. The Ethernet protocol specifies a set of rules for constructing frames. There are explicit minimum and maximum lengths for frames, and a set of required pieces of information that must appear in the frame. Each frame must include, for example, both a destination address and a source address, which identify the recipient and the sender of the message. The address uniquely identifies the node, just as a name identifies a particular person. No two Ethernet devices should ever have the same address.
1.3 IDENTIFICATION OF PROBLEM

1.3.1 TECHNICAL APPROACH

SYMPTOMS AND EFFECTS OF BOTTLENECKS

Until fairly recently, bottleneck had never been a problem. LANs were historically designed around data rates in the millions of bits per second, far in excess of most computing devices’ communications capabilities. However, advances in computing and communications controller technology have changed this scenario. Many devices today can (if given the opportunity) use the full channel capacity of a typical LAN. When many such devices share the channel, it is likely to cause bottlenecks. Bottleneck is a statistical phenomenon; it occurs as a function of traffic patterns. Bottleneck manifests itself in a number of ways.

Increased Network Delay

All LANs have a finite data carrying capacity. When presented with a short-term overload, the LAN distributes that load over time. Thus, when load is light, the average time from submission of a frame for transmission by the host until it is actually sent on the LAN will be short. When there is heavy instantaneous offered load, the average delay (known as service time) will increase. This has the effect of making the network appear “slower”, since it takes longer to send the same amount of data under congestion conditions than it does when load is light. It is difficult to directly measure service time (unless specially-instrumented driver software is configured for exactly this purpose). There are other, more observable metrics that can be used to infer bottle neck conditions.

Observable Parameters

Many parameters of LAN operation can be measured to assess network performance. Some parameters are automatically measured by standard controllers and host software; others typically require special network monitoring equipment, such as protocol analyzers or remote monitors (RMONs).

User Dissatisfaction

The ultimate manifestation of bottlenecks is user dissatisfaction. Regardless of all the collected statistics, if users are happy with the behavior of the system, then there really is no problem (at least, not now). If users are dissatisfied with the performance of the system, then all of the statistics indicating that the network is behaving correctly won’t relieve their ire. User reaction is the most important metric of network performance. Again, user dissatisfaction with the performance of the network does not immediately indicate a congestion problem. The users’ concept of “the network” includes the applications, servers, protocol stacks, internetworking devices, etc., and not just the underlying communications network.

At the below Fig.4 we can see Boğaziçi University Ethernet Network.
1.3.2 MATHEMATICAL APPROACH

Some assumptions are made to make analysis appropriate for our case. Demand may and may not exceed allocation from Server. Sum of Allocations may not exceed Capacitance of Server Bottleneck happens when Demand/Allocation reaches 1. All Demands and Allocations referring to different campuses are identified by variable index i. Approach to the solution to optimization problem is given in METHODOLOGY part of this project.

2 DATA ACQUISITION

2.1 MRTG

The Data for the analysis was acquired fusing the MRTG program. The Multi Router Traffic Grapher (MRTG) is a tool to monitor the traffic load on network-links. MRTG generates HTML pages containing graphical images which provide a LIVE visual representation of this traffic. MRTG takes the measurements of the internet traffic in the Ethernet links for every 5 minutes.
2.2 UNIVERSITY CAFETERIA DATA

Data from Boğaziçi University “Yemekhane” were obtained

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01.05.2002</td>
<td>Lunch</td>
<td>83</td>
<td>36</td>
<td>340</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>228</td>
<td>716</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>65</td>
<td>0</td>
<td>27</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>02.05.2002</td>
<td>Lunch</td>
<td>0</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>61</td>
<td>31</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>55</td>
<td>46</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>03.05.2002</td>
<td>Lunch</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>284</td>
<td>0</td>
<td>30</td>
<td>146</td>
<td>569</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>79</td>
<td>64</td>
<td>0</td>
<td>27</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>06.05.2002</td>
<td>Lunch</td>
<td>42</td>
<td>248</td>
<td>0</td>
<td>192</td>
<td>344</td>
<td>424</td>
<td>34</td>
<td>225</td>
<td>1509</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>106</td>
<td>228</td>
<td>18</td>
<td>158</td>
<td>46</td>
<td>27</td>
<td>583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.05.2002</td>
<td>Lunch</td>
<td>114</td>
<td>329</td>
<td>30</td>
<td>310</td>
<td>77</td>
<td>0</td>
<td>27</td>
<td>887</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>319</td>
<td>0</td>
<td>265</td>
<td>343</td>
<td>465</td>
<td>30</td>
<td>221</td>
<td>1643</td>
</tr>
<tr>
<td>09.05.2002</td>
<td>Lunch</td>
<td>145</td>
<td>311</td>
<td>26</td>
<td>226</td>
<td>51</td>
<td>0</td>
<td>27</td>
<td>786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>2</td>
<td>307</td>
<td>0</td>
<td>193</td>
<td>256</td>
<td>297</td>
<td>31</td>
<td>167</td>
<td>1253</td>
</tr>
<tr>
<td>10.05.2002</td>
<td>Lunch</td>
<td>159</td>
<td>325</td>
<td>25</td>
<td>301</td>
<td>49</td>
<td>0</td>
<td>27</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>339</td>
<td>250</td>
<td>82</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>698</td>
<td></td>
</tr>
<tr>
<td>11.05.2002</td>
<td>Lunch</td>
<td>163</td>
<td>184</td>
<td>31</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>360</td>
<td>0</td>
<td>227</td>
<td>306</td>
<td>363</td>
<td>34</td>
<td>180</td>
<td>1470</td>
</tr>
<tr>
<td>13.05.2002</td>
<td>Lunch</td>
<td>71</td>
<td>310</td>
<td>17</td>
<td>419</td>
<td>74</td>
<td>0</td>
<td>27</td>
<td>918</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>334</td>
<td>0</td>
<td>0</td>
<td>652</td>
<td>325</td>
<td>0</td>
<td>32</td>
<td>197</td>
<td>1540</td>
</tr>
<tr>
<td>14.05.2002</td>
<td>Lunch</td>
<td>42</td>
<td>263</td>
<td>7</td>
<td>314</td>
<td>85</td>
<td>0</td>
<td>27</td>
<td>738</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>346</td>
<td>0</td>
<td>167</td>
<td>233</td>
<td>365</td>
<td>26</td>
<td>161</td>
<td>1298</td>
</tr>
<tr>
<td>15.05.2002</td>
<td>Lunch</td>
<td>50</td>
<td>230</td>
<td>14</td>
<td>255</td>
<td>63</td>
<td>0</td>
<td>27</td>
<td>639</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>363</td>
<td>0</td>
<td>276</td>
<td>338</td>
<td>521</td>
<td>35</td>
<td>285</td>
<td>1818</td>
</tr>
<tr>
<td>16.05.2002</td>
<td>Lunch</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>302</td>
<td>71</td>
<td>0</td>
<td>27</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>302</td>
<td>530</td>
<td>37</td>
<td>208</td>
<td>1186</td>
</tr>
<tr>
<td>17.05.2002</td>
<td>Lunch</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>219</td>
<td>74</td>
<td>0</td>
<td>27</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18.05.2002</td>
<td>Lunch</td>
<td>1</td>
<td>370</td>
<td>0</td>
<td>206</td>
<td>269</td>
<td>393</td>
<td>31</td>
<td>205</td>
<td>1475</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>115</td>
<td>337</td>
<td>32</td>
<td>255</td>
<td>52</td>
<td>0</td>
<td>27</td>
<td>818</td>
<td></td>
</tr>
<tr>
<td>20.05.2002</td>
<td>Lunch</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.04.2002</td>
<td>Lunch</td>
<td>114</td>
<td>163</td>
<td>17</td>
<td>45</td>
<td>36</td>
<td>0</td>
<td>27</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>24.04.2002</td>
<td>Lunch</td>
<td>0</td>
<td>268</td>
<td>0</td>
<td>237</td>
<td>296</td>
<td>374</td>
<td>44</td>
<td>187</td>
<td>1408</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>45</td>
<td>257</td>
<td>11</td>
<td>329</td>
<td>63</td>
<td>0</td>
<td>27</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>25.04.2002</td>
<td>Lunch</td>
<td>0</td>
<td>343</td>
<td>0</td>
<td>183</td>
<td>281</td>
<td>371</td>
<td>32</td>
<td>220</td>
<td>1430</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>257</td>
<td>226</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>26.04.2002</td>
<td>Lunch</td>
<td>18</td>
<td>246</td>
<td>273</td>
<td>0</td>
<td>0</td>
<td>444</td>
<td>33</td>
<td>186</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>240</td>
<td>170</td>
<td>68</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>505</td>
<td></td>
</tr>
<tr>
<td>27.04.2000</td>
<td>Lunch</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>16</td>
<td>36</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>27.10.2001</td>
<td>Lunch</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>311</td>
<td>0</td>
<td>30</td>
<td>173</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>Dinner</td>
<td>33</td>
<td>52</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>163</td>
<td></td>
</tr>
</tbody>
</table>

| TOTAL | 2559 | 7634 | 1449 | 6731 | 5389 | 5514 | 1129 | 3680 | 34085| | |

Table 1. Boğaziçi Cafeteria Data
3 DATA PROCESSING AND INTERPRITATION

3.1 EXTRACTION AND CLEARING OF DATA

Data was firstly extracted from the MRTG log file. It is initially stored in the reverse order in a text format. For the proper processing we reversed the data using C++ written program (see code 1 Appendix B). For the some stochastic analysis raw data is used, but for some we had to covert the data using different time averages (hourly, 6 hour, 12 hour, daily). Initial data was taken with five minute intervals which make 12 intervals for 1 hour.

3.2 CAFETERIA DATA ADJUSTMENTS

The cafeteria data was adjusted according to the daily factors. Data for the weekend was eliminated due to the lack of corresponding data. Data sets that were taken into correlation with the cafeteria data were converted into 1 hour base to obtain meaningful results, because we have user numbers in the cafeteria in two specific time intervals (12:30-2:30) and (17:30-19:30).

![Cafeteria people vs time](image)

Fig. 6 Cafeteria vs. Time

At the above figure we can easily see the fluctuations corresponding to the lunch and dinner differences.

4 STOCHASTIC ANALYSIS

4.1 ANALYSIS IN TIME DOMAIN
Fig. 7 North Campus Internet Traffic Data

Fig. 8 South Campus Internet Traffic Data
Cross-correlations between this campuses data did not give any meaningful results. So, fluctuations in traffic magnitudes are seem to be influenced in each campus due to different reasons and times.

4.2 ANALYSIS IN FREQUENCY DOMAIN

Cross-Correlation between Campuses Internet Traffic Data and Cafeteria didn’t gave any reasonable results. It can be concluded that number of people having meal in cafeteria doesn’t have direct relationship between the current number of internet users. This may be related to the fact that the duration of dinner is almost 2.5 hour and the effect is smashed. The number of students in the evening is by half smaller, so the fluctuations of the students available for internet usage are not important. Also because of the fact that students enter lessons that are 1 hour long the fact of students having meal is not important. The below figure is the correlation graph between the Hisar campus data and cafeteria. As can be seen no meaningful results can be extracted.
Fig. 10 Cross-Correlation Hisar-Cafeteria Campuses Spectral Density Functions

Hisar Campus Spectral Density Function

Fig. 11 Hisar Camp. Spectral Density Function
South Campus Spectral Density Function

Fig. 12 South Camp. Spectral Density Function

Servers Spectral Density Function

Fig. 13 Main server Spectral Density Function
Cross-Correlation Between Campuses

Hisar-South Campus Cross-Correlation

4.3 INTERPRITATION OF RESULTS

As one can see from the cross-correlation function in the Fig.14 that this function has properties of autocorrelation function, such as $R_{xy}(0) \geq R_{xy}(x)$ and $R_{xy}(-x) = R_{xy}(x)$. The explanation for that is that Hisar and South campuses has almost the same “tempo” or rhythm or pace of life. So Hisar and South campuses belong to one university, have the same time table of lectures and breaks. In the Fig.14 we can distinguish picks at 100 values. They are originated due to South Campus’ secondary peaks in spectral graph. Since this campus is the largest one in terms of number internet users, more complex behavior of spectral function is justified.

5 OPTIMIZATION

5.1 METHODOLOGY

Optimization could be performed using several techniques and programs. Since our objective has several constraints, we decided to try several functions with both maximizing and minimizing objectives. But fundament of our analysis is based on following approach:

$$\frac{D(i,j)}{A(i,j)}$$

where $D(i,j)$ and $A(i,j)$ corresponds to demand and allocation Respectively at hour i and campus j

As $D(i,j)/A(i,j)$ approaches 1, possibility of bottleneck increases and actually happens when the ratio exactly equals 1. In following parts more precise description and optimization function described.
In our analysis we tried several approaches on optimization objective identification. Several linear and nonlinear solver programs were considered and some optimization objective functions were proposed. Some of them were to maximize objective functions by changing allocation parameters keeping demand data fixed, while minimizing objective functions with several constraints on demand as well as allocation values were checked. Then linear solver tool in Microsoft Excel was used for a trial. Reasonable results were obtained, but technical aspect was quite cumbersome due to lack of somewhat automatically useful procedure. Since we were supposed to work with a lot of data in our analysis more suitable program was to be introduced and used. So GAMS solver with C++ was implemented.

5.2 SOFTWARE DEVELOPMENT
5.2.1 GAMS SOLVER IDENTIFICATION PARAMETERS
GAMS solver is an optimization program that uses linear and nonlinear solution algorithms for solution of various optimization as mono as well as multi objective functions. Input parameters are defined in text format in *.gms file. Output results are obtained after running GAMS solver in *.LST file. C++ was used to make running program automatically for every new input parameters and obtained results transform to suitable xls format. Source Code can be found in Appendix B.

![GAMS running.](image)

5.2.2 DETERMINATION OF OPTIMIZATION FUNCTION
As mentioned in METHODOLOGY part, minimization of objective led to more reasonable results, while maximization approach brought about “resonance” results that are meaningless.
Examples of MAXIMIZING Objective Functions:
1) OBJ = SUM(I,(DEMAND(I)/ALLOC(I)-1)*(DEMAND(I)/ALLOC(I)-1))-10*Z, where Z=Limit of DEMAND(I)/ALLOC(I);
2) OBJ = SUM(I,(DEMAND(I)/ALLOC(I)-TOTDEM/MAXCAP)* (DEMAND(I)/ALLOC(I)-TOTDEM/ MAXCAP));
3) OBJ = SUM(I,(ALLOC(I)-DEMAND(I))/DEMAND(I));

Examples of MINIMIZING Objective Functions:
4) OBJ = 5*Z+SUM(I,SIGNIF(I)*DEMAND(I)/ALLOC(I)), where Z=Limit of DEMAND(I)/ALLOC(I);
5) OBJ = SUM(I,DEMAND(I)/ALLOC(I));

Finally following Minimization Objective Function was accepted
\[F(i,j)=\sum (\text{Sign.Fact}(i,j)) \cdot (D(i,j)/A(i,j)) \]
where \(D(i,j) \) and \(A(i,j) \) corresponds to demand and allocation respectively at hour \(i \) and campus \(j \). Sign.Fact(i,j) corresponds to significant(weight) factor for giving priority to definite campuses, labs or dormitory internet users.

Constraint \(\sum A_{i,j} = \text{Capacity of Server} \) is introduced for ultimate usage of capacity of server.

5.3 INTERFACE DEVELOPMENT

Our choice of code to be used in interface development stopped on “object orienting programming language” C++, since it’s easy compatibility with GAMS solver. C++ Builder Code was used to develop interface, run GAMS program automatically for every new input parameters and transform obtained results into more useful xls format, so making recalculation procedure very simple. Source Code can be found in Appendix B.
5.4 CASE STUDY TO DETERMINE EFFICIENCY GAIN

In order to estimate the possible gain after optimization following case is considered. Capacity of university server is 1,500,000 bytes/sec which is lower than the maximum total demand that ever occurred. Assumption is that this capacity is equally allocated between campuses, so that each campus has 500,000 bytes/sec option for usage. Following Figures shows demand that could not be satisfied for each campus.

Total area of Demand that is not satisfied for all campuses is equal to 6,275,413 bytes.
After optimization of internet traffic following graph of demand that could not be satisfied is obtained.
Total area of Demand that is not satisfied after optimization for all campuses is equal to 4,036,739 bytes. So that almost there is 36% reduction in demand that is not satisfied. This is quite a considerable number keeping in mind that capacity of the server kept constant.

6 INTERPRITATION OF RESULTS

Considering our assumption we tried to minimize the overall time when internet traffic exceeds 80% of the server capacity some peaks above this level can be bared by the server without major bottlenecks. This assumption has been made due to the fact that it is impossible measure the actual users demand. Data that have been analyzed is the response of the server to the users demand. Server may have allocated less or more than the amount demanded by the user.

6.1 SUMMARY OF FINDINGS

Internet Traffic Data obtained for North, South and Hisar Campuses of Boğaziçi University were converted to a more appropriate time interval and adjusted to other data (cafeteria’s number of students each month). After that analysis in time and frequency domains were performed. Time analysis gave just quantitative parameters such as mean values of internet traffic, fluctuations, overall and campus’ maximum and minimum demand magnitudes. Stochastic analysis in frequency domain led to more “interesting” results. After taking cross-correlations between North-South, South-Hisar and North- Hisar campuses we could “catch” almost the same pattern of behavior of fluctuations for campuses that led us to some trivial conclusions, for example each campus used same time table for lecture hours or the very same students studied at these campuses or all campuses belong to on university.

Then optimization using linear and nonlinear approaches for allocation capacity of server for all three campuses and labs plus dormitories within each campus was performed and optimization parameters and procedure were found and established.
6.2 FINAL RESULTS AND PROPOSED SOLUTION
Given the capacity of server we allocated it in the most efficient way so that to eliminate the possibility of bottleneck if capacity of server is more than the maximum demand ever occurred or decrease the severity of bottleneck if capacity of server is lower than the demand values that may occur several times.
Case study was considered so that to estimate the efficiency that maybe reached thanks to the optimization we propose.

TRADITIONAL SOLUTIONS TO BOTTLENECKS

Bottleneck means that there is more offered load than there is capacity of the LAN to carry it. All solutions to Bottleneck problems involve either increasing the LAN’s capacity, or reducing the offered load.

Increasing LAN Capacity

If a 10 Mbps LAN is experiencing utilization of 80% averaged over a period of hours (typically an indication of bottleneck), the utilization would be on the order of 5% over the same period if the LAN capacity were increased to 100 Mbps. Thus, we can eliminate bottleneck by increasing the capacity of the LAN (as long as we don’t simultaneously increase the offered load).
This solves the problem, but has some undesirable side effects such as:
1) Increased cost. Controllers, hubs, and internetworking devices designed for 100 Mbps operation (regardless of the particular technology) cost more than their 10 Mbps equivalents. While the relationship is not linear with data rate (i.e., it isn’t 10 times the cost), it is still more expensive to use faster technologies.
2) Replacement of existing interfaces and equipment. Not only is the higher speed equipment more expensive, there is usually an existing investment in the lower speed equipment already in place. So the higher cost is not really instead of, but in addition to, the lower speed equipment costs. Added to that is the expense of equipment replacement and installation, and disruption of network services during the changeover. Newly-installed networks (particularly high-speed LANs using less-mature products) often go through a period of unstable, problem-prone behavior, until the administrators become familiar with the equipment and its operation.
3) Replacement of media. In many cases, a higher-speed LAN will require new cabling to be usable. Many existing cable plants were not designed to support high-speed LAN operation. Cables, connectors, patch panels and other wiring closet components may have to be replaced. For some technologies, copper wire may have to be replaced with fiber to be effective.

SWITCH CONCEPTS
A switch is a link-layer internetworking device that allows simultaneous frame exchange among large numbers of LANs and workstations. Using the switches one can control the ISP (Internet Service Provider) incoming backbone bandwidth in most efficient way. Using the results obtained we switch router can be programmed in order to allocate the necessary traffic between the campuses daily, weekly, monthly. Although the procedure made above can be fully atomized it can although be internalized into the router for continuous analysis according to the incoming data. We propose the switching rate as 1 hour to overcome inconveniences that may be caused to the users.
7 CONCLUSION
Proposed optimization technique, procedure as well as software we used led to 36% reduction in demand that is not satisfied with capacity of the server kept constant. So there is a gain in internet demand satisfaction of internet users in Boğaziçi University and in turn in decrease in troubleshooting while using internet service there.
APPENDIX A: MATLAB SOURCE CODE

1) Function **grafx** to open file with data and to plot it in time domain.

```matlab
function f=a();
fid=fopen('Backbone.txt','r')
[X,count]=fscanf(fid,'%f')
%X=X-mean(X);
plot(X);
f=X;
```

2) Function **average** to open file with data, calculate hourly averages for adjustments

```matlab
function f=a()
fid=fopen('HisarAv.txt','r')
[X,count]=fscanf(fid,'%f')
Y=1:floor(count/12);
a=0;
i=1;
% z=floor(count/2);
for n = 1:count
    a=a+X(n);
    if (mod(n,12)==0) & (n~=1)
        Y(i)=a/12;
        a=0;
        i=i+1;
    end
end
f=Y;
```

3) Some other built-in functions that are already in library of MATLAB such as:
crosscorr, **mean**, **plot**, **abs**, **fft** and etc.
APPENDIX B: GAMS AND C++ SOURCE CODE

1) **Input** parameter gms file for GAMS solver

```gams
$TITLE Campus Traffic
$OFFUPPER
SETS I /SOUTH,NORTH,HISAR/;
SCALARS
MAXCAP "Maximum Capacity" /1500000.000000/;
***************************
PARAMETERS DEMAND(I), SIGNIF(I), TOTALDEM;
DEMAND('HISAR') = 114373.000000;
DEMAND('NORTH') = 499831.000000;
DEMAND('SOUTH') = 294893.000000;
SIGNIF('HISAR') = 1.000000;
SIGNIF('NORTH') = 1.000000;
SIGNIF('SOUTH') = 1.000000;
TOTALDEM = SUM(I, DEMAND(I));
***************************
VARIABLES
ALLOC(I) Allocation to campus i
Z Maximum bottleneck indicator
OBJ Objective Function Value;
POSITIVE VARIABLES ALLOC,Z;
FREE VARIABLE OBJ;
ALLOC.LO(I) = DEMAND(I);
***************************
EQUATIONS
CAPACITY Allocation is limited with capacity
DEMANDC(I) Demand constraint satisfies demands of the campuses
LIMIT Minimize maximum d over a
OBJECTIVE Objective function;
CAPACITY.. SUM(I, ALLOC(I)) =E= MAXCAP;
LIMIT(I).. DEMAND(I)/ALLOC(I) =L= Z;
DEMANDC(I).. ALLOC(I) =G= DEMAND(I);
OBJECTIVE.. OBJ =E= 5*Z + SUM(I, SIGNIF(I)*DEMAND(I)/ALLOC(I));
***************************
MODEL CampusTr /ALL/;
OPTION NLP=CONOPT;
SOLVE CampusTr USING NLP MINIMIZING OBJ;
DISPLAY OBJ.L, ALLOC.L;
file results /CampusTraffic.csv/;
results.pc=5;
put results;
put "Objective Function Value ",OBJ.1/;
loop(i, put i.tl, ALLOC.1(i)/);
putclose;
```

2) **Output** parameter LST file of GAMS solver
Sets

I /SOUTH, NORTH, HISAR/;

Scalars

MAXCAP "Maximum Capacity" /1500000.000000/;

Parameters

DEMAND(I), SIGNIF(I), TOTALDEM;

DEMAND(HISAR) = 114373.000000;
DEMAND(NORTH) = 499831.000000;
DEMAND(SOUTH) = 294893.000000;
SIGNIF(HISAR) = 1.000000;
SIGNIF(NORTH) = 1.000000;
SIGNIF(SOUTH) = 1.000000;
TOTALDEM = SUM(I, DEMAND(I));

Variables

ALLOC(I) Allocation to campus i;
Z Maximum bottleneck indicator;
OBJ Objetive Function Value;

Positive Variables

ALLOC, Z;

Free Variable

OBJ;

Equations

CAPACITY Allocation is limited with capacity;
DEMANDC(I) Demand contsraint satisfies demands of the campuses;
LIMIT Minize maximum d over a;
OBJECTIVE Objective function;

CAPACITY.. SUM(I, ALLOC(I)) =E= MAXCAP;
LIMIT(I).. DEMAND(I)/ALLOC(I) =L= Z;
DEMANDC(I).. ALLOC(I) =G= DEMAND(I);
OBJECTIVE.. OBJ =E= 5*Z + SUM(I, SIGNIF(I)*DEMAND(I)/ALLOC(I));

Model

CampusTr /ALL/;

Option

NLP = CONOPT;

Solve

CampusTr USING NLP MINIMIZING OBJ;

Display

OBJ.L, ALLOC.L;

File

results /CampusTraffic.csv/;

Put

"Objective Function Value", OBJ.L;

Putclose;

Compilation Time = 0.010 SECONDS 0.1 Mb WAT-50-094
(LHS = 909097, INFES = 590903 ***)

---- DEMANDC = Demand constraint satisfies demands of the campuses
DEMANDC(SOUTH).. ALLOC(SOUTH) =G= 294893 ; (LHS = 294893)
DEMANDC(NORTH).. ALLOC(NORTH) =G= 499831 ; (LHS = 499831)
DEMANDC(HISAR).. ALLOC(HISAR) =G= 114373 ; (LHS = 114373)

---- LIMIT = Limit minimizes maximum d over a
LIMIT(SOUTH).. - (3.391060E-6)*ALLOC(SOUTH) - Z =L= 0 ; (LHS = 1, INFES = 1 ***)
LIMIT(NORTH).. - (2.000676E-6)*ALLOC(NORTH) - Z =L= 0 ; (LHS = 1, INFES = 1 ***)
LIMIT(HISAR).. - (8.743322E-6)*ALLOC(HISAR) - Z =L= 0 ; (LHS = 1, INFES = 1 ***)

---- OBJECTIVE = Objective function
OBJECTIVE.. (3.3910605E-6)*ALLOC(SOUTH) + (2.0006762E-6)*ALLOC(NORTH)
+ (8.7433223E-6)*ALLOC(HISAR) - 5*Z + OBJ =E= 0 ; (LHS = -3, INFES = 3 ***)

H 3
GAMS 2.50.094 DOS Extended/C 06/19/02 19:30:42 PAGE 3

Campus Traffic
Column Listing

SOLVE CAMPUSTR USING NLP FROM LINE 36

---- ALLOC = Allocation to campus i
ALLOC(SOUTH)
(LO, L, .UP = 294893, 294893, +INF)
1 CAPACITY
1 DEMANDC(SOUTH)
-3.391060E-6 LIMIT(SOUTH)
3.3910605E-6 OBJECTIVE
ALLOC(NORTH)
(LO, L, .UP = 499831, 499831, +INF)
1 CAPACITY
1 DEMANDC(NORTH)
-2.000676E-6 LIMIT(NORTH)
2.0006762E-6 OBJECTIVE
ALLOC(HISAR)
(LO, L, .UP = 114373, 114373, +INF)
1 CAPACITY
1 DEMANDC(HISAR)
8.7433222E-6 LIMIT(HISAR)
8.7433223E-6 OBJECTIVE

---- Z = Maximum bottleneck indicator
Z
(LO, L, .UP = 0, 0, +INF)
-1 LIMIT(SOUTH)
-1 LIMIT(NORTH)
-1 LIMIT(HISAR)
-5 OBJECTIVE

---- OBJ = Objective Function Value
OBJ
(LO, L, .UP = -INF, 0, +INF)
1 OBJECTIVE

GAMS 2.50.094 DOS Extended/C 06/19/02 19:30:42 PAGE 4

Campus Traffic
Model Statistics

SOLVE CAMPUSTR USING NLP FROM LINE 36
MODEL STATISTICS

27
SOLVE SUMMARY
MODEL CAMPUSTR OBJECTIVE OBJ
TYPE NLP DIRECTION MINIMIZE
SOLVER CONOPT FROM LINE 36
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE 7.1613
RESOURCE USAGE, LIMIT 0.055 1000.000
ITERATION COUNT, LIMIT 5 10000
EVALUATION ERRORS 0 0

CONOPT 386/486 DOS version 2.042E-003-033
Copyright (C) ARKI Consulting and Development A/S
Bagsvaerdvej 246 A
DK-2880 Bagsvaerd, Denmark
Using default control program.
** Optimal solution. Reduced gradient less than tolerance.
CONOPT time Total 0.055 seconds
of which: Function evaluations 0.000 = 0.0%
Derivative evaluations 0.008 = 14.3%
Work length = 0.03 Mbytes
Estimate = 0.03 Mbytes
Max used = 0.01 Mbytes

LOWER LEVEL UPPER MARGINAL
---- EQU CAPACITY 1.5000E+6 1.5000E+6 1.5000E+6 EPS
CAPACITY Allocation is limited with capacity
---- EQU DEMANDC Demand constraint satisfies demands of the campuses
LOWER LEVEL UPPER MARGINAL
SOUTH 2.9489E+5 2.9518E+5 +INF .
NORTH 4.9983E+5 4.9983E+5 +INF EPS
HISAR 1.1437E+5 7.0499E+5 +INF .

LOWER LEVEL UPPER MARGINAL
---- EQU LIMIT Minize maximum d over a
NORTH -INF . . -5.000
HISAR -INF -0.838 .

LOWER LEVEL UPPER MARGINAL
---- EQU OBJECTIVE . . . 1.000
OBJECTIVE Objective function
---- VAR ALLOC Allocation to campus i
LOWER LEVEL UPPER MARGINAL
SOUTH 2.9489E+5 2.9518E+5 +INF
NORTH 4.9983E+5 4.9983E+5 +INF
HISAR 1.1437E+5 7.0499E+5 +INF 3.1543E-6

LOWER LEVEL UPPER MARGINAL
---- VAR Z .1.000 +INF
---- VAR OBJ -INF 7.161 +INF

Z Maximum bottleneck indicator
OBJ Objective Function Value

**** REPORT SUMMARY : 0 NONOPT
 0 INFEASIBLE
 0 UNBOUNDED
 0 ERRORS
GAMS 2.50.094 DOS Extended/C 06/19/02 19:30:42 PAGE 7
Campus Traffic
Ex e c u t i o n
---- 37 VARIABLE OBJ.L = 7.161 Objective Function Value
---- 37 VARIABLE ALLOC.L Allocation to campus i
SOUTH 295181.527, NORTH 499831.000, HISAR 704987.473

**** REPORT FILE SUMMARY
RESULTS C:\GAMS\GAMS\CAMPUSTRAFFIC.CSV
EXECUTION TIME = 0.020 SECONDS 0.1 Mb
USER: Nijaz Bajgoric (PC system #1) G981007:1547AS-WAT
Bogazici University DC1736

**** FILE SUMMARY
INPUT C:\GAMS\GAMS\ALLOCATE.GMS
OUTPUT C:\GAMS\GAMS\ALLOCATE.LST

4) C++ CODE FOR GAMS INTERFACE
#include <vcl.h>
#pragma hdrstop
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <string.h>
#include <fstream.h>
#include <conio.h>
define DELIMITER ","
define "campustraffic.h"
//--
#pragma package(smart_init)
#pragma resource ".dfm"
TForm1 *Form1;
//--
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{ Image1->Picture->LoadFromFile("c:\gams\gams\bountxt.bmp");
}
void __fastcall TForm1::Initialize_Parameters()
{
 MaxCap=atof(Edit1->Text.c_str());
 SignHisar=atof(Edit2->Text.c_str());
 SignNorth=atof(Edit3->Text.c_str());
 SignSouth=atof(Edit4->Text.c_str());
}

void __fastcall TForm1::WriteGAMSCode(float demH,float demN,float demS)
{
 //GMS file for the code
 FILE *fp2; //GMS file for the code
 fprintf(fp2,"$TITLE Campus Traffic\n");
 fprintf(fp2,"$OFFUPPER\n");
 fprintf(fp2,"SETS I /SOUTH,NORTH,HISAR/;\n");
 fprintf(fp2,"SCALARS\n");
 fprintf(fp2,"MAXCAP "Maximum Capacity" /%f/;\n",MaxCap);
 fprintf(fp2," *******************\n");
 fprintf(fp2,"PARAMETERS DEMAND(I), SIGNIF(I),TOTALDEM;\n");
 fprintf(fp2," DEMAND('HISAR')= %f ;\n",demH);
 fprintf(fp2," DEMAND('NORTH')= %f ;\n",demN);
 fprintf(fp2," DEMAND('SOUTH')= %f ;\n",demS);
 fprintf(fp2," SIGNIF('HISAR')= %f ;\n",SignHisar);
 fprintf(fp2," SIGNIF('NORTH')= %f ;\n",SignNorth);
 fprintf(fp2," SIGNIF('SOUTH')= %f ;\n",SignSouth);
 fprintf(fp2," TOTALDEM=SUM(I, DEMAND(I));\n",SignSouth);
 fprintf(fp2," *******************\n");
 fprintf(fp2," VARIABLES\n");
 fprintf(fp2," ALLOC(I) Allocation to campus i \n");
 fprintf(fp2," Z Maximum bottleneck indicator\n");
 fprintf(fp2," OBJECTIVE Objective Function Value;\n");
 fprintf(fp2," POSITIVE VARIABLES ALLOC,Z;\n");
 fprintf(fp2," FREE VARIABLE OBJ;\n");
 fprintf(fp2," ALLOC.LO(I)=DEMAND(I);\n");
 fprintf(fp2," CAPACITY Allocation is limited with capacity\n");
 fprintf(fp2," LIMIT(I).. DEMAND(I)/ALLOC(I) =L= Z;\n");
 fprintf(fp2," OBJECTIVE Objective function;\n");
 fprintf(fp2," CAPACITY.. SUM(I , ALLOC(I)) =E= MAXCAP;\n");
 fprintf(fp2," LIMIT(I).. DEMAND(I)/ALLOC(I) =L= Z;\n");
 fprintf(fp2," RATIO(I).. DEMAND(I) =G= ALLOC(I)*0.6;\n");
}
fprintf(fp2,"DEMANDC(I).. ALLOC(I) =G= DEMAND(I);\n"");
//fprintf(fp2,"OBJECTIVE.. OBJ =E= Z;\n");
//SUM(I,SIGNIF(I)*DEMAND(I)/ALLOC(I));\n");
//fprintf(fp2,"OBJECTIVE.. OBJ =E= SUM(I,(DEMAND(I)/ALLOC(I)-
TOTALDEM/MAXCAP)*(DEMAND(I)/ALLOC(I)-TOTALDEM/MAXCAP));\n";
fprintf(fp2,"OBJECTIVE.. OBJ =E= SUM(I,SIGNIF(I)*DEMAND(I)/ALLOC(I));\n");
//fprintf(fp2,"OBJECTIVE.. OBJ =E= SUM(I,ALLOC(I)-DEMAND(I));\n");
//fprintf(fp2,"OBJECTIVE.. OBJ =E= SUM(I,ALLOC(I)-DEMAND(I));\n");
//fprintf(fp2,"OBJECTIVE.. OBJ =E= SIGNIF('HISAR')*DEMAND('HISAR')/ALLOC('HISAR')+SIGNIF('NORTH')*DEMAND('NORTH')/ALLOC('NORTH')+SIGNIF('SOUTH')*DEMAND('SOUTH')/ALLOC('SOUTH');\n"");
fprintf(fp2,"*******************
MODEL CampusTr /ALL/;
OPTION NLP=CONOPT;
//fprintf(fp2,"SOLVE PHIZER USING LP MAXIMIZING OBJ;\n");
//fprintf(fp2,"SOLVE CampusTr USING NLP MAXIMIZING OBJ;\n");
//fprintf(fp2,"SOLVE CampusTr USING NLP MINIMIZING OBJ;\n");
fprintf(fp2,"DISPLAY OBJ.L,ALLOC.L;\n");
fprintf(fp2,"file results /CampusTraffic.csv/;\n");
fprintf(fp2,"results.pc=5;\n");
fprintf(fp2,"put results;\n");
fprintf(fp2,"put "Objective Function Value \"",OBJ.L;\n"");
fprintf(fp2,"loop(i,put i.tl, ALLOC.L(i);\n"");
fprintf(fp2,"putclose;\n");
fclose(fp2);
}

void __fastcall TForm1::AppendToResultFile(int count)
{
FILE *fp3; //Results file : Results.csv
FILE *fp4; //CampusTraffic.csv
fp4=fopen("CampusTraffic.csv","r");
char str1[501];
float value;

fp3=fopen("Results.txt","a+");
if(count==1)
 fprintf(fp3,"ObsNo,Obj,AHisar,ANorth,ASouth\n");
fprintf(fp3,"%d",count);

for(int k=0;k<4;k++)
 { fgets(str1,500,fp4);
 strtok(str1,DELIMITER);
 fprintf(fp3,"%s%d","\n");
 }
fclose(fp2);
}
value=atof(strtok(NULL,DELIMITER));
if (k==3)
{
 fprintf(fp3,"%f\n",value);
 else fprintf(fp3,"%f," ,value);
}
 fclose(fp4);
 fclose(fp3);
}

//-------------------------------
void __fastcall TForm1::CopyResultsFile()
{
 FILE *fp1;//Results.txt
 char str1[501];
 float value;
 ofstream results("Results.csv");
 results<<"ObsNo"<<","<<"Obj"<<","<<"AHisar"<<","<<"ANorth"<<","<<"ASouth"<<"n";
 fp1=fopen("Results.txt","r");
 fgets(str1,500,fp1);
 int c=0;
 while(!feof(fp1))
 {
 fgets(str1,500,fp1);
 str1[strlen(str1)-1] = '\0';
 results<<strtok(str1,DELIMITER)<<",";
 for(int i=0;i<4;i++)
 { value=atof(strtok(NULL,DELIMITER));
 if(i<3)
 results<<value<<"n";
 else
 results<<value<<"\n";
 c++;
 }
 if(c==NoObs)
 break;
 }
 fclose(fp1);
}

//-------------------------------
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 char str1[501];
 //char str2[501];
 int count=0;
 float demandH, demandN, demandS;

 FILE *fp1; //DATA file
 FILE *fp3; //Results file
 remove("Results.txt");

 Initialize_Parameters();
 fp1=fopen("Data.csv","r");
 fgets(str1,500,fp1);
 NoObs=0;
 //first line of Excel file,no data stored
 while(!feof(fp1))
 {
 fgets(str1,500,fp1);
 NoObs++;
 }
 NoObs--;
 ShowMessage(NoObs);
 rewind(fp1);
 fgets(str1,500,fp1);
 while(count<=NoObs)
 {
 count++;
 fgets(str1,500,fp1);

 demandH=atof(strtok(str1,DELIMITER));
 //ShowMessage(demandH);
 demandN=atof(strtok(NULL,DELIMITER));
 //ShowMessage(demandN);
 demandS=atof(strtok(NULL,DELIMITER));
 //ShowMessage(demandS);
 WriteGAMSCode(demandH,demandN,demandS);
 system("cd c\gams\gams");
 system("gams Allocate");
 AppendToResultFile(count);

 //remove("allocate.gms");
 //remove("allocate.lst");
 if(count==NoObs)
 break;
 }
 fclose(fp1);
 CopyResultsFile();
}
void __fastcall TForm1::Exit1Click(TObject *Sender)
{
 Form1->Close();
}

void __fastcall TForm1::Button2Click(TObject *Sender)
{
 Edit1->Clear();
 Edit2->Clear();
 Edit3->Clear();
 Edit4->Clear();
}

5) C++ CODE FOR DATA REVERSIONS AND TRANSFORMATIONS
 // Data Reversal
 #include<string>
 #include <fstream.h>
 #include<iostream.h>
 #include<stdio.h>
 #include<cstring>
 #include <iostream.h>
 #include <stdlib.h>
 void main()
 {
 fstream examplefile;
 examplefile.open ("InputFile.txt", ios::in | ios::out);

 char buffer[15];
 float array[10000];
 int i=0;
 while(!examplefile.eof())
 {
 examplefile.getline (buffer,100);
 array[i]=atof(buffer);
 i++;
 }

 int z;
 z=(i-1)/12;
 float* num;
 num=new float[z];
 cout<<(i-1)<<endl<<z;
 int index=0;
 float a=0;
 for(int k=0;k<(i-1);k++)
 {
 a=a+array[k];
 if(((k+1)%12)==0)
 {34
num[index]=float(float(a)/12);
index++;
a=0;
}
} examplefile.close();
examplefile.open ("OutputFile.txt", ios::trunc | ios::out);
int j=0;
while(j<z)
{
 examplefile<<num[j]<<endl;
 j++;
}
examplefile.close();

Averaging Data According Specified Base
#include<string>
#include <fstream.h>
#include <iostream.h>
#include<stdio.h>
#include<cstring>
#include <iostream.h>
#include <stdlib.h>
void main()
{
 fstream examplefile;
 examplefile.open ("SouthAv.txt", ios::in | ios::out);
 int base=0;
 cout<<"Ente the time base";
 cin>>base;
 char buffer[15];
 float array[10000];
 int i=0;
 while(!examplefile.eof())
 {
 examplefile.getline (buffer,100);
 array[i]=atof(buffer);
 i++;
 }
 int z;
 z=(i-1)/base;
 float* num;
 num=new float[z];
 cout<<(i-1)<<endl<<z;
 int index=0;
 float a=0;
 for(int k=0;k<(i-1);k++)
 {
 }
a = a + array[k];
if(((k+1)%base)==0)
{
 num[index]=float(a)/base;
 index++;
 a=0;
}
}
examplefile.close();
examplefile.open("SouthAvOut.txt", ios::trunc | ios::out);
int j=0;
while(j<z)
{
 examplefile<<num[j]<<endl;
 j++;
} examplefile.close();
}